Protection of mice from herpes simplex virus-induced retinitis by in vitro-activated immune cells. 1989

J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33136.

A form of acute retinal necrosis occurred in the contralateral eyes of susceptible mice 1 week after each received a uniocular injection of live herpes simplex virus type 1 (HSV-1) in the anterior chamber. Although these mice did not develop systemic delayed hypersensitivity to virus antigens, their sera contained virus-specific antibodies at the time contralateral retinitis occurred. These findings suggest that systemic immunity might not be able to protect against contralateral retinitis. To explore this possibility further, we examined lymph nodes and spleens of intraocularly infected mice to determine whether their lymphoid tissues contained primed HSV-1-specific cytotoxic T cells. Virus-specific cytotoxic T cells were readily identified in these mice. We wondered why successful immune priming did not confer protection against HSV-1 retinitis. We examined this issue by evaluating the capacity of in vitro-generated, HSV-1-specific effector T cells to prevent retinitis by infusing these cells by various routes and at various times into mice that received an intracameral injection of HSV-1. The results revealed that virus-specific effector cells could prevent contralateral retinitis if injected intravenously or into the anterior chamber of the contralateral eye at the same time that virus was injected into one eye. However, the effector cells failed to prevent retinitis if they were injected into the same eye that received HSV-1 or if their intravenous administration was delayed until 24 h after the HSV-1 injection into the eye. We concluded that immune T cells can protect against contralateral retinal necrosis caused by uniocular injection of HSV-1 into the anterior chamber but only if they are administered during the first 24 h after virus infection. We propose that a retinitis-inducing process is set in motion during this early time interval postinfection. Once the process has been initiated and established, it is no longer susceptible to immune intervention. It would appear that mice that are susceptible to contralateral retinitis fail to mobilize a protective response quickly enough to ward off the establishment of the retinitis-inducing process and its disastrous eventuality.

UI MeSH Term Description Entries
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D007635 Keratitis, Dendritic A form of herpetic keratitis characterized by the formation of small vesicles which break down and coalesce to form recurring dendritic ulcers, characteristically irregular, linear, branching, and ending in knoblike extremities. (Dictionary of Visual Science, 3d ed) Furrow Keratitis,Keratitis, Furrow,Dendritic Keratitides,Dendritic Keratitis,Furrow Keratitides,Keratitides, Dendritic,Keratitides, Furrow
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell

Related Publications

J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
June 1985, Journal of virology,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
February 1991, Journal of virology,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
September 1978, Cellular immunology,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
June 1985, The Journal of general virology,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
August 1990, Nippon Ganka Gakkai zasshi,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
June 2008, Virology,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
April 1977, Infection and immunity,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
January 1975, Intervirology,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
November 1987, Nippon Ganka Gakkai zasshi,
J U Igietseme, and P J Calzada, and A R Gonzalez, and J W Streilein, and S S Atherton
August 1989, Journal of neuroimmunology,
Copied contents to your clipboard!