Angiotensin receptors and angiotensin I-converting enzyme in rat intestine. 1989

K A Duggan, and F A Mendelsohn, and N R Levens
Department of Medicine, Austin Hospital, Melbourne, Victoria, Australia.

The purpose of this study was to map the distribution of angiotensin II (ANG II) receptors and ANG I-converting enzyme (ACE) in rat intestine. ANG II binding sites were visualized by in vitro autoradiography using iodinated [Sar1, Ile8]ANG II. The distribution of ACE was mapped using an iodinated derivative of lisinopril. Male Sprague-Dawley rats were killed and the interior of the whole intestine washed with ice-cold saline. Segments of duodenum, jejunum, ileum, and colon were quickly frozen in a mixture of isopentane and dry ice. Twenty-micron frozen sections were thaw-mounted onto gelatin-coated slides, incubated with either ligand, and exposed to X-ray film. After exposure and subsequent development, the films were quantitated by computerized densitometry. ANG II receptors were most dense in the colon, followed by the ileum, duodenum, and jejunum. Within each segment of intestine, specific ANG II binding sites were localized exclusively to the muscularis. In contrast, ACE was present in both the mucosa and the muscularis. The colocalization of ANG II receptors and ACE may suggest a role for locally generated ANG II in the control of intestinal function. The luminal orientation of ACE in the mucosa of the small intestine may suggest that at this site ACE serves primarily to hydrolyze dietary peptides.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin

Related Publications

K A Duggan, and F A Mendelsohn, and N R Levens
July 1996, Hypertension (Dallas, Tex. : 1979),
K A Duggan, and F A Mendelsohn, and N R Levens
January 1989, Advances in experimental medicine and biology,
K A Duggan, and F A Mendelsohn, and N R Levens
May 1995, Nihon rinsho. Japanese journal of clinical medicine,
K A Duggan, and F A Mendelsohn, and N R Levens
February 1995, Nihon rinsho. Japanese journal of clinical medicine,
K A Duggan, and F A Mendelsohn, and N R Levens
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
K A Duggan, and F A Mendelsohn, and N R Levens
February 1975, Circulation research,
K A Duggan, and F A Mendelsohn, and N R Levens
August 1999, Nihon rinsho. Japanese journal of clinical medicine,
K A Duggan, and F A Mendelsohn, and N R Levens
January 1986, Histochemistry,
K A Duggan, and F A Mendelsohn, and N R Levens
December 1992, Biology of reproduction,
K A Duggan, and F A Mendelsohn, and N R Levens
April 1992, Neuroendocrinology,
Copied contents to your clipboard!