Synchronised approach for intrauterine insemination in subfertile couples. 2014

Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
Department of Obstetrics and Gynaecology, University Medical Centre, Groningen, Netherlands.

BACKGROUND In many countries intrauterine insemination (IUI) is the treatment of first choice for a subfertile couple when the infertility work up reveals an ovulatory cycle, at least one open Fallopian tube and sufficient spermatozoa. The final goal of this treatment is to achieve a pregnancy and deliver a healthy (singleton) live birth. The probability of conceiving with IUI depends on various factors including age of the couple, type of subfertility, ovarian stimulation and the timing of insemination. IUI should logically be performed around the moment of ovulation. Since spermatozoa and oocytes have only limited survival time correct timing of the insemination is essential. As it is not known which technique of timing for IUI results in the best treatment outcome, we compared different techniques for timing IUI and different time intervals. OBJECTIVE To evaluate the effectiveness of different synchronisation methods in natural and stimulated cycles for IUI in subfertile couples. METHODS We searched for all publications which described randomised controlled trials of the timing of IUI. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL) (1966 to October 2014), EMBASE (1974 to October 2014), MEDLINE (1966 to October 2014) and PsycINFO (inception to October 2014) electronic databases and prospective trial registers. Furthermore, we checked the reference lists of all obtained studies and performed a handsearch of conference abstracts. METHODS Randomised controlled trials (RCTs) comparing different timing methods for IUI were included. The following interventions were evaluated: detection of luteinising hormone (LH) in urine or blood, single test; human chorionic gonadotropin (hCG) administration; combination of LH detection and hCG administration; basal body temperature chart; ultrasound detection of ovulation; gonadotropin-releasing hormone (GnRH) agonist administration; or other timing methods. METHODS Two review authors independently selected the trials, extracted the data and assessed study risk of bias. We performed statistical analyses in accordance with the guidelines for statistical analysis developed by The Cochrane Collaboration. The overall quality of the evidence was assessed using GRADE methods. RESULTS Eighteen RCTs were included in the review, of which 14 were included in the meta-analyses (in total 2279 couples). The evidence was current to October 2013. The quality of the evidence was low or very low for most comparisons . The main limitations in the evidence were failure to describe study methods, serious imprecision and attrition bias.Ten RCTs compared different methods of timing for IUI. We found no evidence of a difference in live birth rates between hCG injection versus LH surge (odds ratio (OR) 1.0, 95% confidence interval (CI) 0.06 to 18, 1 RCT, 24 women, very low quality evidence), urinary hCG versus recombinant hCG (OR 1.17, 95% CI 0.68 to 2.03, 1 RCT, 284 women, low quality evidence) or hCG versus GnRH agonist (OR 1.04, 95% CI 0.42 to 2.6, 3 RCTS, 104 women, I(2) = 0%, low quality evidence).Two RCTs compared the optimum time interval from hCG injection to IUI, comparing different time frames that ranged from 24 hours to 48 hours. Only one of these studies reported live birth rates, and found no difference between the groups (OR 0.52, 95% CI 0.27 to 1.00, 1 RCT, 204 couples). One study compared early versus late hCG administration and one study compared different dosages of hCG, but neither reported the primary outcome of live birth.We found no evidence of a difference between any of the groups in rates of pregnancy or adverse events (multiple pregnancy, miscarriage, ovarian hyperstimulation syndrome (OHSS)). However, most of these data were very low quality. CONCLUSIONS There is insufficient evidence to determine whether there is any difference in safety and effectiveness between different methods of synchronization of ovulation and insemination. More research is needed.

UI MeSH Term Description Entries
D007246 Infertility A reduced or absent capacity to reproduce. Sterility,Reproductive Sterility,Sterility, Reproductive,Sub-Fertility,Subfertility
D007315 Insemination, Artificial Artificial introduction of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION. Artificial Insemination,Eutelegenesis,Artificial Inseminations,Eutelegeneses,Inseminations, Artificial
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008297 Male Males
D010061 Ovulation Detection Method to determine the occurrence of OVULATION by direct or indirect means. Indirect methods examine the effects of PROGESTERONE on cervical mucus (CERVIX MUCUS), or basal body temperature. Direct ovulation detection, generally used in fertility treatment, involves analyses of circulating hormones in blood and ULTRASONOGRAPHY. Ovulation Detection, Basal Body Temperature Method,Ovulation Detection, Cervical Mucus Method,Ovulation Detection, Sympto-Thermal Method,Detection, Ovulation,Ovulation Detection, Sympto Thermal Method,Ovulation Detections
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D005260 Female Females
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
January 1990, Andrologia,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
November 1989, Harefuah,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
April 2008, Fertility and sterility,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
June 2006, Obstetrical & gynecological survey,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
July 2021, The Cochrane database of systematic reviews,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
January 2003, The Cochrane database of systematic reviews,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
July 2016, European journal of obstetrics, gynecology, and reproductive biology,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
April 2020, Journal of ovarian research,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
December 2007, Fertility and sterility,
Astrid E P Cantineau, and Mirjam J Janssen, and Ben J Cohlen, and Thomas Allersma
March 2018, Reproductive biomedicine online,
Copied contents to your clipboard!