Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: a comparative study. 2015

Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
Grupo de Investigación en Sustancias Bioactivas, Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.

OBJECTIVE Amaryllidaceae alkaloids exhibit a wide range of physiological effects, of which the acetylcholinesterase (AChE) inhibitory activity is the most relevant. However, scientific evidence related to their neuroprotective effectiveness against glutamate-induced toxicity has been lacking. Thus, the purpose of this study was to conduct a comparative study of the neuroprotective activity and the AChE inhibitory activity of species of Amaryllidaceae. METHODS The neuroprotective activity against glutamate-induced toxicity was measured in rat cortical neurons and the Ellman method was employed for the quantification of acetylcholinesterase inhibitory activity of alkaloidal extracts of five species of Amaryllidaceae (Crinum jagus, Crinum bulbispermum, Hippeastrum barbatum, Hippeastrum puniceum and Zephyranthes carinata). The alkaloid Amaryllidaceae patterns based on GC/MS analyses were also investigated. RESULTS The results showed that the alkaloidal extract from C. jagus presented a high neuroprotective activity in both pre- and post-treatments against a glutamate excitotoxic stimulus. Furthermore, the alkaloid extracts from C. jagus and Z. carinata revealed an inhibitory activity of AChE from the electric eel with IC50 values of 18.28±0.29 and 17.96±1.22μg/mL, respectively. In addition, 46 alkaloids were detected by GC/MS, and 20 of them were identified based on their mass spectra and retention index. The results suggest that the neuroprotective effects might be associated with lycorine and crinine-type alkaloids, whereas the acetylcholinesterase enzyme inhibitory activity could be related to galanthamine and lycorine-type alkaloids, although not based on synergistic processes. CONCLUSIONS In summary, Amaryllidaceae species are sources of alkaloids with potential use for Alzheimer's disease.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine

Related Publications

Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
November 2020, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
February 2005, Bioorganic & medicinal chemistry,
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
September 2010, Bioorganic & medicinal chemistry letters,
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
July 2012, Natural product communications,
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
August 2023, Life (Basel, Switzerland),
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
April 2020, Molecules (Basel, Switzerland),
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
October 2002, Life sciences,
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
December 1959, Journal of comparative and physiological psychology,
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
December 2015, Molecules (Basel, Switzerland),
Natalie Cortes, and Rafael Andrés Posada-Duque, and Rafael Alvarez, and Fernando Alzate, and Strahil Berkov, and Gloria Patricia Cardona-Gómez, and Edison Osorio
June 1991, Journal of dental research,
Copied contents to your clipboard!