| D008958 |
Models, Molecular |
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. |
Molecular Models,Model, Molecular,Molecular Model |
|
| D011487 |
Protein Conformation |
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). |
Conformation, Protein,Conformations, Protein,Protein Conformations |
|
| D003173 |
Complement C1s |
A 77-kDa subcomponent of complement C1, encoded by gene C1S, is a SERINE PROTEASE existing as a proenzyme (homodimer) in the intact complement C1 complex. Upon the binding of COMPLEMENT C1Q to antibodies, the activated COMPLEMENT C1R cleaves C1s into two chains, A (heavy) and B (light, the serine protease), linked by disulfide bonds yielding the active C1s. The activated C1s, in turn, cleaves COMPLEMENT C2 and COMPLEMENT C4 to form C4b2a (CLASSICAL C3 CONVERTASE). |
C 1 Esterase,C1 Esterase,C1s Complement,Complement 1 Esterase,Complement 1s,Complement Component 1s,C1s, Complement,Complement, C1s,Component 1s, Complement,Esterase, C 1,Esterase, C1,Esterase, Complement 1 |
|
| D005810 |
Multigene Family |
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) |
Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000595 |
Amino Acid Sequence |
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. |
Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein |
|
| D012689 |
Sequence Homology, Nucleic Acid |
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. |
Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base |
|
| D012697 |
Serine Endopeptidases |
Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. |
Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine |
|
| D015394 |
Molecular Structure |
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. |
Structure, Molecular,Molecular Structures,Structures, Molecular |
|
| D015923 |
Complement C1r |
A 80-kDa subcomponent of complement C1, existing as a SERINE PROTEASE proenzyme in the intact complement C1 complex. When COMPLEMENT C1Q is bound to antibodies, the changed tertiary structure causes autolytic activation of complement C1r which is cleaved into two chains, A (heavy) and B (light, the serine protease), connected by disulfide bonds. The activated C1r serine protease, in turn, activates COMPLEMENT C1S proenzyme by cleaving the Arg426-Ile427 bond. No fragment is released when either C1r or C1s is cleaved. |
C1r Complement,Complement 1r,Complement Component 1r,C1r, Complement,Complement, C1r,Component 1r, Complement |
|