Protection by superoxide dismutase from myocardial dysfunction and attenuation of vasodilator reserve after coronary occlusion and reperfusion in dog. 1989

J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
Veterans Administration Medical Center, Gainesville, Florida.

Previous studies indicate impairment of coronary arterial ring relaxation and loss of coronary vasodilator reserve after coronary artery occlusion and reperfusion. These changes are mediated in part through loss of endothelium-derived relaxing factor (EDRF) and/or myocardial neutrophil accumulation. To examine if superoxide dismutase (SOD), a scavenger of superoxide radicals, would modify the diminished coronary vasodilator reserve after temporary coronary occlusion in the intact animal, open-chest mongrel dogs were subjected to 1 hour of circumflex (Cx) coronary artery occlusion followed by 1 hour of reperfusion and treated with saline or SOD. Before Cx occlusion, coronary blood flow increased, and vascular resistance decreased (both p less than 0.01) in response to EDRF-dependent vasodilator acetylcholine as well as EDRF-independent vasodilator nitroglycerin. After Cx reperfusion, resting Cx coronary blood flow and vascular resistance were similar to the preocclusion values. In the saline-treated animals, there was evidence of myocardial dysfunction, which was measured by segmental shortening (-6 +/- 2% vs. 10 +/- 2%). Furthermore, increase in Cx coronary blood flow and reduction in vascular resistance in response to both vasodilators were significantly (p less than 0.01) impaired; these occurrences suggested loss of coronary vasodilator reserve. Myocardial histology showed extensive capillary plugging by neutrophils in the Cx-supplied myocardium. Myocardial myeloperoxidase activity, an index of neutrophil infiltration, was also increased in the Cx compared with the left anterior descending coronary artery region (p less than 0.02). Treatment of dogs with SOD, started at the end of Cx occlusion and continued during reperfusion, exerted significant (p less than 0.01) protective effect against reperfusion-induced attenuation of coronary vasodilator reserve in response to both acetylcholine and nitroglycerin. Loss of myocardial function (segmental shortening 5 +/- 1% vs. 10 +/- 1%) was less than in the saline-treated animals (p less than 0.01). Cx region-myocardial neutrophil accumulation and myeloperoxidase activity were also less (p less than 0.02) in the SOD-treated than in the saline-treated dogs. These observations suggest that coronary reperfusion impairs coronary vasodilator reserve in intact dogs. This impairment can be modified by treatment of animals with SOD before reperfusion. Capillary plugging by neutrophils may contribute to the altered coronary vasodilator reserve observed in the immediate postreperfusion period, and SOD modifies this reperfusion-induced impairment.

UI MeSH Term Description Entries
D008297 Male Males
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D005996 Nitroglycerin A volatile vasodilator which relieves ANGINA PECTORIS by stimulating GUANYLATE CYCLASE and lowering cytosolic calcium. It is also sometimes used for TOCOLYSIS and explosives. Glyceryl Trinitrate,Anginine,Dynamite,Gilustenon,Nitrangin,Nitro-Bid,Nitro-Dur,Nitrocard,Nitroderm,Nitroderm TTS,Nitroglyn,Nitrol,Nitrolan,Nitrong,Nitrospan,Nitrostat,Perlinganit,Susadrin,Sustac,Sustak,Sustonit,Transderm Nitro,Tridil,Trinitrin,Trinitrolong,Nitro Bid,Nitro Dur,NitroBid,NitroDur,Trinitrate, Glyceryl
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl

Related Publications

J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
January 1990, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
May 1990, Circulation research,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
February 1987, Circulation,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
October 1986, Journal of molecular and cellular cardiology,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
August 1978, The American journal of cardiology,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
October 1990, Japanese journal of pharmacology,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
August 2001, Kidney international,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
September 1991, Journal of the American College of Cardiology,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
January 1992, Circulation,
J L Mehta, and W W Nichols, and W H Donnelly, and D L Lawson, and L Thompson, and M ter Riet, and T G Saldeen
February 2010, Biomaterials,
Copied contents to your clipboard!