Sequence-defined polymers for the delivery of oligonucleotides. 2014

Taavi Lehto, and Ernst Wagner
Pharmaceutical Biotechnology, Department of Pharmacy and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Munich, Germany.

Short synthetic oligonucleotides (ONs) are a group of therapeutic molecules with enormous clinical potential owing to their high specificity and ability to target the expression of virtually any single or group of genes. Clinical translation of ONs is hampered by the inadequate bioavailability in the target cells due to the substantial extracellular and intracellular barriers exposed to these molecules. Different cationic polymers have been successfully deployed for the delivery of ONs. However, heterogeneous nature of these classical polymers is not suitable for clinical applications and hence vectors with completely defined structure are required. In this review, we discuss recent advances with sequence-defined polymers and their application for the delivery of short ONs.

UI MeSH Term Description Entries
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle
D018014 Gene Transfer Techniques The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms. Gene Delivery Systems,Gene Transfer Technique,Transgenesis,Delivery System, Gene,Delivery Systems, Gene,Gene Delivery System,Technique, Gene Transfer,Techniques, Gene Transfer,Transfer Technique, Gene,Transfer Techniques, Gene
D034741 RNA, Small Interfering Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions. RNA, Scan,Repeat-Associated siRNA,Scan RNA,Small Scan RNA,Trans-Acting siRNA,siRNA,siRNA, Repeat-Associated,siRNA, Trans-Acting,Short Hairpin RNA,Short Interfering RNA,Small Hairpin RNA,Small Interfering RNA,scnRNA,shRNA,tasiRNA,Hairpin RNA, Short,Hairpin RNA, Small,Interfering RNA, Short,Interfering RNA, Small,RNA, Short Hairpin,RNA, Short Interfering,RNA, Small Hairpin,RNA, Small Scan,Repeat Associated siRNA,Scan RNA, Small,Trans Acting siRNA,siRNA, Repeat Associated,siRNA, Trans Acting

Related Publications

Taavi Lehto, and Ernst Wagner
January 2018, Topics in current chemistry (Cham),
Taavi Lehto, and Ernst Wagner
December 2023, Journal of physics. Condensed matter : an Institute of Physics journal,
Taavi Lehto, and Ernst Wagner
August 1972, Nature: New biology,
Taavi Lehto, and Ernst Wagner
March 2022, Science advances,
Taavi Lehto, and Ernst Wagner
September 2011, Angewandte Chemie (International ed. in English),
Taavi Lehto, and Ernst Wagner
August 2016, Molecular therapy : the journal of the American Society of Gene Therapy,
Taavi Lehto, and Ernst Wagner
December 2016, Biomaterials,
Taavi Lehto, and Ernst Wagner
November 1998, Immunopharmacology,
Taavi Lehto, and Ernst Wagner
March 1992, Nucleic acids research,
Copied contents to your clipboard!