Phagocytosis of aged human neutrophils by macrophages is mediated by a novel "charge-sensitive" recognition mechanism. 1989

J S Savill, and P M Henson, and C Haslett
Department of Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.

The removal of neutrophils and their histotoxic contents from the inflamed site is a prerequisite for resolution of tissue injury, and a point at which factors critical to the pathogenesis of chronic inflammation may act. Engulfment of intact, senescent neutrophils by macrophages represents an important neutrophil disposal process. In this study the mechanism by which human monocyte-derived macrophages (M phi) recognized and ingested human neutrophils that had been aged in culture was studied using an in vitro phagocytic assay. Inhibition of M phi receptors for Ig Fc and the opsonic complement fragments C3b and iC3b with MAbs to M phi FcR, CR1, CR3, and CR4 had no effect on recognition, and the pattern of inhibition observed when polyanions were included in the medium at 1 mg/ml was different from that reported for the M phi receptor for protein advanced glycosylation end products (AGE), indicating a recognition mechanism different from those proposed for M phi phagocytosis of senescent erythrocytes. Furthermore, although aging neutrophils undergo programmed cell death (or apoptosis), which is directly related to recognition by M phi, the pattern of inhibition observed with monosaccharides was different from that reported to inhibit the binding of apoptotic mouse thymocytes to isologous M phi. By contrast, evidence was obtained for a novel recognition mechanism inhibitable by cationic sugars and amino acids in a charge-dependent fashion, and directly modulated by pH but not affected by inhibitors of the mannose-6-phosphate, sheep erythrocyte, mannosyl-fucosyl, asialoglycoprotein, and scavenger receptors of the macrophage. These observations suggest that hydrogen ions and charged molecules may modulate M phi uptake of senescent neutrophils at inflamed sites, and that recognition itself may involve charged structures on the cells.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein

Related Publications

J S Savill, and P M Henson, and C Haslett
January 2018, Frontiers in immunology,
J S Savill, and P M Henson, and C Haslett
July 2002, Cell,
J S Savill, and P M Henson, and C Haslett
July 2018, Molecular cancer therapeutics,
J S Savill, and P M Henson, and C Haslett
August 1982, The Journal of experimental medicine,
J S Savill, and P M Henson, and C Haslett
July 1992, Agents and actions,
J S Savill, and P M Henson, and C Haslett
June 1967, Nature,
J S Savill, and P M Henson, and C Haslett
January 2016, Geriatrics & gerontology international,
J S Savill, and P M Henson, and C Haslett
September 1983, Blood,
Copied contents to your clipboard!