Specificity of enzyme-substrate interactions in foot-and-mouth disease virus polyprotein processing. 1989

M D Ryan, and G J Belsham, and A M King
A.F.R.C. Institute of Animal Health, Pirbright Laboratory, Woking, England.

A series of transcripts derived from FMDV cDNA plasmids containing defined regions of the genome were translated in a rabbit reticulocyte lysate system. The products were analysed directly or following incubation with an FMDV-infected cell processing extract. Processing by the L proteinase at the L/1A cleavage site occurred when most of the P1-2A protein was absent. Substitution of sequences upstream of the 2C/3A cleavage site showed that the 3C proteinase was also able to cleave at an entirely novel cleavage site, apparently at K-I amino acid pairs. Cleavage at the 2A/2B site was not only independent of L and 3C proteinases, but was shown to occur when 2A and as few as four 2B N-terminal amino acids were present. Thus, the disparate proteolytic activities responsible for all three primary processing events that give rise to the products L, P1-2A, 2BC, and P3 were highly resistant either to major deletion or substitution of protein sequences adjacent to, or at, the site of cleavage. By contrast, secondary processing in trans was sensitive to changes at remote sites. For example, removal of the C-terminal regions of P1-2A and 2BC precursors impaired their ability to act as substrates for 3C proteinase activity. Processing of P1-2A, particularly of the 1D/2A cleavage site, was enhanced by inclusion of sequences from the 3D region of the genome.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005537 Aphthovirus A genus of the family PICORNAVIRIDAE infecting mainly cloven-hoofed animals. They cause vesicular lesions and upper respiratory tract infections. FOOT AND MOUTH DISEASE VIRUS is the type species. Equine rhinitis A virus,Equine rhinovirus 1,Aphthoviruses
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M D Ryan, and G J Belsham, and A M King
December 1985, The Journal of general virology,
M D Ryan, and G J Belsham, and A M King
February 1994, The EMBO journal,
M D Ryan, and G J Belsham, and A M King
January 2021, Frontiers in immunology,
M D Ryan, and G J Belsham, and A M King
April 2012, Journal of virological methods,
M D Ryan, and G J Belsham, and A M King
August 2009, Biochemistry,
M D Ryan, and G J Belsham, and A M King
November 2007, Journal of molecular biology,
M D Ryan, and G J Belsham, and A M King
July 1983, FEBS letters,
M D Ryan, and G J Belsham, and A M King
February 1996, Journal of virology,
Copied contents to your clipboard!