Desensitization of calcium mobilization and cell function in human neutrophils. 1989

G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
Kaiser Regional Research Laboratory, Los Angeles, CA 90027.

Neutrophils pretreated with the chemoattractant formylmethionyl-leucyl-phenylalanine become unresponsive when re-exposed to the same ligand, a process termed desensitization. We have examined whether desensitization of transduction (Ca2+ mobilization) or of other cell functions (superoxide generation, enzyme release, or aggregation) occurs synchronously. Simultaneous studies of Ca2+ mobilization and aggregation by using Fura-2-loaded cells indicate that, under conditions where the aggregation response is abolished, most of the Ca2+ mobilization is unaltered. Further studies were then carried out to ascertain whether desensitization of Ca2+ mobilization could in fact be induced. Desensitization was observed, and was dependent on the number of exposures of the cells to the ligand, the concentration of the ligand, and whether the ligand was left in the medium or was removed. The pattern of resensitization was dependent on the experimental design. Under conditions where ligand was continuously present, no recovery of the Ca2+-mobilization response was seen with subsequent challenges. In contrast, on removal of ligand, this response showed partial recovery. Whereas complete desensitization of aggregation was noted, enzyme release showed a markedly lesser degree of desensitization and required more frequent exposures to the ligand before it was observed. Little or no desensitization of superoxide generation was observed regardless of the conditions utilized. Studies using phorbol myristate acetate as the ligand showed that Ca2+ mobilization and aggregation could be simultaneously inhibited. Our results suggest that discrete mechanisms of desensitization are possible in human neutrophils, and that desensitization of one particular function (aggregation) does not imply concomitant desensitization of other functions.

UI MeSH Term Description Entries
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer

Related Publications

G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
June 1989, Biochimica et biophysica acta,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
November 1985, Biochemical and biophysical research communications,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
July 1988, Journal of cellular physiology,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
June 1991, Biochimica et biophysica acta,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
July 1992, Naunyn-Schmiedeberg's archives of pharmacology,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
January 1985, Nouvelle revue francaise d'hematologie,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
September 1992, Progress in neurobiology,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
June 1996, Journal of cellular physiology,
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
July 2001, Shock (Augusta, Ga.),
G H Lee, and J S Kaptein, and S J Scott, and H Niedzin, and C I Kalunta, and P M Lad
October 1988, Prostaglandins, leukotrienes, and essential fatty acids,
Copied contents to your clipboard!