Correlation of ontogeny with function of [3H]U69593 labelled kappa opioid binding sites in the rat spinal cord. 1989

C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge, U.K.

In this study, we have used a variety of in vitro and in vivo techniques to demonstrate the presence, and examine the function, of [3H]U69593 binding sites in the spinal cord of the 9-16-day-old rat in comparison to the adult. Equilibrium binding of [3H]U69593 to homogenates of adult rat spinal cord revealed a single population of non-interacting sites with a maximum binding capacity of 10.4 +/- 1.4 fmol/mg protein and an apparent equilibrium dissociation constant of 2.31 +/- 0.47 nM while in 9-16-day-old cord these parameters were 57.0 +/- 9.4 fmol/mg protein and 2.28 +/- 0.22 nM, respectively. The total binding capacity per cord was 95.8 +/- 8.3 and 121.8 +/- 7.7 fmol/cord for adult and immature rat, respectively. Competition studies using receptor-selective opioid ligands showed that these sites were kappa opioid in nature. Autoradiographical techniques demonstrated a uniform distribution of these sites over transverse sections of 9-16-day-old rat cord. In vitro electrophysiology was performed on spinal cord slice preparations from the 9-16-day-old rat. U69593 (100 nM-1 microM) had no effect on passive membrane properties but produced a naloxone-reversible depression of both spontaneous and electrically evoked activity in dorsal horn neurones. Direct intrathecal injection of U69593 (0.3-10.0 micrograms/animal) into 9-16-day-old rats produced a dose-dependent, naloxone-reversible, antinociception when measured using the paw-pressure test. In conclusion, we have shown that, in contrast to the adult, the spinal cord of the 9-16-day-old rat has a significantly higher concentration of [3H]U69593 binding sites which have functional in vitro and in vivo correlates.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D017473 Receptors, Opioid, kappa A class of opioid receptors recognized by its pharmacological profile. Kappa opioid receptors bind dynorphins with a higher affinity than endorphins which are themselves preferred to enkephalins. Opioid Receptors, kappa,Receptors, kappa,Receptors, kappa Opioid,kappa Receptors,kappa Opioid Receptor,kappa Receptor,Opioid Receptor, kappa,Receptor, kappa,Receptor, kappa Opioid,kappa Opioid Receptors

Related Publications

C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
January 1986, NIDA research monograph,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
October 1989, Neuropharmacology,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
August 1995, Journal of molecular and cellular cardiology,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
July 1989, Journal of neurochemistry,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
November 1991, Journal of molecular and cellular cardiology,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
January 1989, Neuroscience,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
January 1992, Journal of receptor research,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
November 1986, Neuroscience,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
December 1984, Neuropeptides,
C A Allerton, and J A Smith, and J C Hunter, and R G Hill, and J Hughes
April 1994, Neurochemistry international,
Copied contents to your clipboard!