Spectroscopic characterization of secondary amine mono-oxygenase. Comparison to cytochrome P-450 and myoglobin. 1989

J A Alberta, and L A Andersson, and J H Dawson
Department of Chemistry, University of South Carolina, Columbia 29208.

Secondary amine mono-oxygenase from Pseudomonas aminovorans catalyzes the NAD(P)H- and dioxygen-dependent N-dealkylation of secondary amines to yield a primary amine and an aldehyde. Heme iron, flavin, and non-heme iron prosthetic groups are known to be present in the oligomeric enzyme. The N-dealkylation reaction is also catalyzed by the only other heme-containing mono-oxygenase, cytochrome P-450. In order to identify the heme iron axial ligands of secondary amine mono-oxygenase so as to better define the structural requirements for oxygen activation by heme enzymes, we have investigated the spectroscopic properties of the enzyme. The application of three different spectroscopic techniques, UV-visible absorption, magnetic circular dichroism and electron paramagnetic resonance, to study eight separate enzyme derivatives has provided extensive and convincing evidence for the presence of a proximal histidine ligand. This conclusion is based primarily on comparisons of the spectral properties of the enzyme with those of parallel derivatives of myoglobin (histidine proximal ligand) and P-450 (cysteinate proximal ligand). Spectral studies of ferric secondary amine mono-oxygenase as a function of pH have led to the proposal that the distal ligand is water. Deprotonation of the distal water ligand occurs upon either raising the pH to 9.0 or substrate (dimethylamine) binding. In contrast, the deoxyferrous enzyme appears to have a weakly bound nitrogen donor distal ligand. Initial spectroscopic studies of the iron-sulfur units in the enzyme are interpreted in terms of a pair of Fe2S2 clusters. Secondary amine mono-oxygenase is unique in its ability to function as cytochrome P-450 in activating molecular oxygen but to do so with a myoglobin-like active site. As such, it provides an important system with which to probe structure-function relations in heme-containing oxygenases.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX

Related Publications

J A Alberta, and L A Andersson, and J H Dawson
January 1980, Pharmacology & therapeutics,
J A Alberta, and L A Andersson, and J H Dawson
January 1973, Drug metabolism and disposition: the biological fate of chemicals,
J A Alberta, and L A Andersson, and J H Dawson
January 1990, Methods in enzymology,
J A Alberta, and L A Andersson, and J H Dawson
January 1973, Drug metabolism and disposition: the biological fate of chemicals,
J A Alberta, and L A Andersson, and J H Dawson
July 1984, Xenobiotica; the fate of foreign compounds in biological systems,
J A Alberta, and L A Andersson, and J H Dawson
January 1979, Drug metabolism reviews,
J A Alberta, and L A Andersson, and J H Dawson
January 1997, The Journal of steroid biochemistry and molecular biology,
J A Alberta, and L A Andersson, and J H Dawson
August 1987, Biochemical Society transactions,
J A Alberta, and L A Andersson, and J H Dawson
April 1980, Biochemical pharmacology,
Copied contents to your clipboard!