Differential effects of nerve transection on the ACh and GABA receptors of chick ciliary ganglion neurons. 1989

A E McEachern, and M H Jacob, and D K Berg
Department of Biology, University of California, San Diego, La Jolla 92093.

Chick ciliary ganglion neurons have nicotinic acetylcholine receptors (AChRs) that mediate chemical transmission through the ganglion, and GABAA receptors of unknown significance. Previous experiments examining the role of cell-cell interactions in regulating neuronal AChRs have shown that postganglionic axotomy of ciliary ganglia in newly hatched chicks causes a 10-fold decline in total AChRs within 5 d compared with unoperated contralateral ganglia and that preganglionic denervation causes a 3-fold decline within 10 d. Many of the AChRs are known to be intracellular; of those present on the cell surface, only a small fraction appears to be functionally available normally. In the present experiments, the effects of the operations on functional AChRs and GABAA receptors in the plasma membrane of the neurons were examined by removing the ganglia 5 d after axotomy or 10 d after denervation, dissociating them into single cells, and immediately measuring their ACh and GABA sensitivities with intracellular recording techniques. The ACh sensitivity of axotomized ciliary ganglion neurons was reduced 10-fold compared with neurons from unoperated contralateral ganglia of the same chicks. The reduction could be largely accounted for by a decrease in the maximum response and did not arise from a change either in the dose-response curve or the acetylcholinesterase activity of the neurons. Autoradiographic studies using a radiolabeled anti-AChR monoclonal antibody also demonstrated a substantial decrease in the total number of surface AChRs associated with axotomized neurons. In contrast, axotomy had no unilateral effect on the GABA response.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias

Related Publications

A E McEachern, and M H Jacob, and D K Berg
August 1988, Molecular pharmacology,
A E McEachern, and M H Jacob, and D K Berg
March 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A E McEachern, and M H Jacob, and D K Berg
November 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A E McEachern, and M H Jacob, and D K Berg
March 1981, Brain research,
A E McEachern, and M H Jacob, and D K Berg
August 2020, Journal of visualized experiments : JoVE,
A E McEachern, and M H Jacob, and D K Berg
October 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A E McEachern, and M H Jacob, and D K Berg
June 1983, Brain research,
A E McEachern, and M H Jacob, and D K Berg
July 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A E McEachern, and M H Jacob, and D K Berg
April 1993, Brain research,
Copied contents to your clipboard!