Fv-4 resistance gene: a truncated endogenous murine leukemia virus with ecotropic interference properties. 1989

H Ikeda, and H Sugimura
Laboratory of Experimental Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.

Fv-4 is a mouse gene which controls susceptibility to infection by ecotropic murine leukemia virus (MuLV). We previously cloned part of an endogenous MuLV associated with the resistance allele of the Fv-4 gene (Fv-4r). In this report, we describe an extended clone of the Fv-4r allele consisting of a 17-kilobase DNA fragment containing the retroviral sequence and its 5'-flanking sequence. The new DNA clone contains a truncated MuLV with delta pol-env-long terminal repeat sequences but no other MuLV-reactive sequence within 13 kilobases upstream of the truncated MuLV. Transfection of this clone into mouse cells led to transcription of Fv-4 env mRNA, expression of the Fv-4r-specific MuLV envelope protein, and resistance to infection with ecotropic MuLV but not amphotropic and dualtropic MuLVs. Restriction of ecotropic viruses appears to occur at or before viral cDNA synthesis. This result is consistent with a model of receptor interference for Fv-4 restriction. Our data also suggest that the 5' non-MuLV sequence is important for biological function, since a DNA clone which lacks most of the 5'-flanking sequence did not efficiently confer the resistance phenotype.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D009052 Leukemia Virus, Murine Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice. Graffi Virus,Graffi's Chloroleukemic Strain,Leukemia Viruses, Murine,Mouse Leukemia Viruses,Murine Leukemia Virus,Murine Leukemia Viruses,Graffi Chloroleukemic Strain,Graffis Chloroleukemic Strain,Leukemia Viruses, Mouse
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph

Related Publications

H Ikeda, and H Sugimura
February 1984, Proceedings of the National Academy of Sciences of the United States of America,
H Ikeda, and H Sugimura
August 1992, The Journal of general virology,
H Ikeda, and H Sugimura
October 1999, Laboratory animal science,
H Ikeda, and H Sugimura
August 1981, International journal of cancer,
H Ikeda, and H Sugimura
April 1981, Journal of the National Cancer Institute,
Copied contents to your clipboard!