Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation. 2015

T J Phillips, and C Reed, and R Pastor
VA Portland Health Care System, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.

The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF(1)) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF(1) antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.

UI MeSH Term Description Entries
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000428 Alcohol Drinking Behaviors associated with the ingesting of ALCOHOLIC BEVERAGES, including social drinking. Alcohol Consumption,Alcohol Intake,Drinking, Alcohol,Alcohol Drinking Habits,Alcohol Drinking Habit,Alcohol Intakes,Consumption, Alcohol,Drinking Habit, Alcohol,Habit, Alcohol Drinking,Habits, Alcohol Drinking,Intake, Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018019 Receptors, Corticotropin-Releasing Hormone Cell surface proteins that bind corticotropin-releasing hormone with high affinity and trigger intracellular changes which influence the behavior of cells. The corticotropin releasing-hormone receptors on anterior pituitary cells mediate the stimulation of corticotropin release by hypothalamic corticotropin releasing factor. The physiological consequence of activating corticotropin-releasing hormone receptors on central neurons is not well understood. CRH Receptors,Corticotropin Releasing-Factor Receptor,Corticotropin Releasing-Hormone Receptors,Receptors, CRH,CRF Receptor,CRF Receptors,CRH Receptor,Corticotropin Releasing-Factor Receptors,Corticotropin Releasing-Hormone Receptor,Receptors, CRF,Corticotropin Releasing Factor Receptor,Corticotropin Releasing Factor Receptors,Corticotropin Releasing Hormone Receptor,Corticotropin Releasing Hormone Receptors,Corticotropin-Releasing Hormone Receptors,Hormone Receptors, Corticotropin-Releasing,Receptor, CRF,Receptor, CRH,Receptor, Corticotropin Releasing-Factor,Receptor, Corticotropin Releasing-Hormone,Receptors, Corticotropin Releasing Hormone,Receptors, Corticotropin Releasing-Factor,Receptors, Corticotropin Releasing-Hormone,Releasing-Factor Receptor, Corticotropin,Releasing-Factor Receptors, Corticotropin,Releasing-Hormone Receptor, Corticotropin,Releasing-Hormone Receptors, Corticotropin

Related Publications

T J Phillips, and C Reed, and R Pastor
March 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T J Phillips, and C Reed, and R Pastor
November 1998, Progress in neurobiology,
T J Phillips, and C Reed, and R Pastor
January 1988, Advances in experimental medicine and biology,
T J Phillips, and C Reed, and R Pastor
October 2010, Experimental biology and medicine (Maywood, N.J.),
T J Phillips, and C Reed, and R Pastor
January 1990, Annals of the New York Academy of Sciences,
T J Phillips, and C Reed, and R Pastor
January 1982, Endocrine reviews,
T J Phillips, and C Reed, and R Pastor
May 1988, Deutsche medizinische Wochenschrift (1946),
T J Phillips, and C Reed, and R Pastor
March 1985, Presse medicale (Paris, France : 1983),
Copied contents to your clipboard!