Impulse propagation and muscle activation in long maximal voluntary contractions. 1989

C K Thomas, and J J Woods, and B Bigland-Ritchie
John B. Pierce Foundation, New Haven, Connecticut 06519.

With fatigue, force generation may be limited by several factors, including impaired impulse transmission and/or reduced motor drive. In 5-min isometric maximal voluntary contraction, no decline was seen in the peak amplitude of the tibialis anterior compound muscle mass action potential (M wave) either during or immediately after the voluntary effort, provided maximal nerve stimulation was retained. For first dorsal interosseous (FDI) muscle, M wave amplitudes declined by 19.4 +/- 1.6% during the first 2 min but did not change significantly thereafter, despite the continued force reduction (up to 94% in 5 min for both muscles). The duration of the FDI M waves increased (greater than 30%), suggesting that the small decline in amplitude was the result of increased dispersion between the responses of different motor units. Some subjects kept FDI maximally activated throughout, but when they used tibialis anterior, twitch occlusion and tetanic muscle stimulation showed that most subjects were usually only able to do so for the first 60 s and thereafter only during brief "extra efforts." Thus force loss during isometric voluntary contractions sustained at the highest intensities results mainly from failure of processes within the muscle fibers.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013977 Tibia The second longest bone of the skeleton. It is located on the medial side of the lower leg, articulating with the FIBULA laterally, the TALUS distally, and the FEMUR proximally. Tibias

Related Publications

C K Thomas, and J J Woods, and B Bigland-Ritchie
July 1979, The Journal of physiology,
C K Thomas, and J J Woods, and B Bigland-Ritchie
August 1998, Acta physiologica Scandinavica,
C K Thomas, and J J Woods, and B Bigland-Ritchie
December 2017, European journal of applied physiology,
C K Thomas, and J J Woods, and B Bigland-Ritchie
June 2004, The International journal of neuroscience,
C K Thomas, and J J Woods, and B Bigland-Ritchie
July 1996, Muscle & nerve,
C K Thomas, and J J Woods, and B Bigland-Ritchie
January 1995, European journal of applied physiology and occupational physiology,
C K Thomas, and J J Woods, and B Bigland-Ritchie
April 1990, The Journal of physiology,
C K Thomas, and J J Woods, and B Bigland-Ritchie
October 1998, The Journal of physiology,
C K Thomas, and J J Woods, and B Bigland-Ritchie
November 2016, Journal of neurophysiology,
C K Thomas, and J J Woods, and B Bigland-Ritchie
August 2008, European journal of applied physiology,
Copied contents to your clipboard!