Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. 1989

J Röper, and J R Schwarz
Physiologisches Institut, Universitätskrankenhaus Eppendorf, Hamburg, FRG.

1. Potassium currents were measured in voltage-clamped single myelinated rat nerve fibres before and after paranodal demyelination with 0.2% pronase or 0.2% lysolecithin added to the external solution. Sodium currents were blocked by 300 nM-tetrodotoxin. For the purpose of comparison, intact frog nerve fibres were also investigated. 2. Our results suggest the existence of at least two distinct types of K+ channels in the intact node of Ranvier, one with slow and another with fast gating kinetics, in the ratio 4:1. 3. In the rat nodal membrane, slow K+ channels have voltage-dependent time constants of K+ deactivation with tau n = 68 ms at E = -105 mV and tau n = 26 ms at E = -150 mV at 20 degrees C. The activation curve of the slow K+ conductance is sigmoid with an inflexion point at -60 mV. This means that about 35% of the slow K+ channels are in the open state at the resting potential of -77 mV. Slow K+ channels could be blocked by 10 mM-tetraethylammonium chloride, but were insensitive to 4-aminopyridine. 4. After paranodal demyelination the ratio of fast to slow K+ channels increased from 17 to 83%. As in the frog (Dubois, 1981 alpha), the population of fast K+ channels in the rat may consist of two different subgroups, both of which can be blocked by 4-aminopyridine. 5. Demyelination was accompanied by an increase in the capacity current which was used to estimate the exposed membrane area. The density of slow and fast K+ channels was calculated from the quotient of the steady-state K+ conductance to membrane area. The density of the slow K+ channels is maximal in the nodal membrane and decreases to 1/31 in the internode. By contrast, the distribution of the fast K+ channels differs, their density being maximal in the paranode and decreasing to one-sixth in the node and internode.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Röper, and J R Schwarz
June 1985, Acta physiologica Scandinavica,
J Röper, and J R Schwarz
April 1981, Nature,
J Röper, and J R Schwarz
January 1981, Advances in neurology,
J Röper, and J R Schwarz
April 1971, Experientia,
J Röper, and J R Schwarz
May 1991, Pflugers Archiv : European journal of physiology,
J Röper, and J R Schwarz
January 1991, European biophysics journal : EBJ,
J Röper, and J R Schwarz
January 1989, Pflugers Archiv : European journal of physiology,
J Röper, and J R Schwarz
January 1982, The Journal of physiology,
J Röper, and J R Schwarz
July 1953, Nature,
Copied contents to your clipboard!