Endogenous opioid peptides in the control of food intake in cats. 1989

A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
INSERM U10, Hôpital Bichat, Paris, France.

In this report, we investigated the role of exogenous and endogenous enkephalins on food intake in the cat, using, respectively, exogenous [D-Ala2-Met5]-enkephalin (DAME) and acetorphan (Ac) in order to inhibit the degradation of endogenous enkephalins. In addition, the selective peripheral antagonist naltrexone methylbromide (NTxMB) and the nonselective antagonist naloxone (Nx) were used in an attempt to discriminate central and peripheral opioid receptors. In 18-hours food-deprived animals, Ac (5 mg/kg IV) increased milk intake during sham feeding (+18%, p less than 0.05), but did not modify it in feeding conditions. Nx (1 mg/kg SC) reduced milk intake in sham-feeding experiments (-67%, p less than 0.01) more than in milk-feeding conditions (-30%, p less than 0.01). NTxMB (1 mg/kg SC) did not modify milk intake in sham-feeding but decreased it in feeding experiments. In nonfasted animals, Ac did not modify food intake. IV infusion of DAME (50 micrograms/kg) resulted in a reduction of daily food intake (-32%, p less than 0.01). Nx (1 mg/kg SC) decreased the earlier 30 min intake followed by reduction of daily intake (-30%, p less than 0.01). NTxMB (1 and 4 mg/kg SC) increased the 30-min intake dose dependently, without significant change in daily intake. In conclusion, Ac increases food intake in sham-feeding conditions, suggesting that endogenous enkephalins are likely to be involved in the stimulation of food intake. The effects of Nx and NTxMB furthermore suggest both a central activation, and a peripheral inhibition of food intake by opiates when food is allowed to proceed normally through the digestive tract.

UI MeSH Term Description Entries
D008297 Male Males
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D005260 Female Females

Related Publications

A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
December 1997, Appetite,
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
January 1986, Physiological reviews,
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
August 1997, Brain research,
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
March 1978, Physiology & behavior,
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
February 1979, Psychological medicine,
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
April 2009, International journal of obesity (2005),
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
November 1986, Research in veterinary science,
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
November 1983, British medical journal (Clinical research ed.),
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
December 1984, European journal of obstetrics, gynecology, and reproductive biology,
A Bado, and C Rozé, and M J Lewin, and M Dubrasquet
January 1981, Bulletin de la Societe des sciences medicales du Grand-Duche de Luxembourg,
Copied contents to your clipboard!