Novel pyrazine analogs of chalcones: synthesis and evaluation of their antifungal and antimycobacterial activity. 2015

Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic. marta.kucerova@faf.cuni.cz.

Infectious diseases, such as tuberculosis and invasive mycoses, represent serious health problems. As a part of our long-term efforts to find new agents for the treatment of these diseases, a new series of pyrazine analogs of chalcones bearing an isopropyl group in position 5 of the pyrazine ring was prepared. The structures of the compounds were corroborated by IR and NMR spectroscopy and their purity confirmed by elemental analysis. The susceptibility of eight fungal strains to the studied compounds was tested. The results have been compared with the activity of some previously reported propyl derivatives. The only strain that was susceptible to the studied compounds was Trichophyton mentagrophytes. It was found that replacing a non-branched propyl with a branched isopropyl did not have a decisive and unequivocal influence on the in vitro antifungal activity against T. mentagrophytes. In vitro activity against Trichophyton mentagrophytes comparable with that of fluconazole was exhibited by nitro-substituted derivatives. Unfortunately, no compound exhibited efficacy comparable with that of terbinafine, which is the most widely used agent for treating mycoses caused by dermatophytes. Some of the prepared compounds were assayed for antimycobacterial activity against M. tuberculosis H37Rv. The highest potency was also displayed by nitro-substituted compounds. The results of the present study are in a good agreement with our previous findings and confirm the positive influence of electron-withdrawing groups on the B-ring of chalcones on the antifungal and antimycobacterial activity of these compounds.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D011719 Pyrazines A heterocyclic aromatic organic compound with the chemical formula C4H4N2. Pyrazine
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics
D000995 Antitubercular Agents Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy. Anti-Tuberculosis Agent,Anti-Tuberculosis Agents,Anti-Tuberculosis Drug,Anti-Tuberculosis Drugs,Antitubercular Agent,Antitubercular Drug,Tuberculostatic Agent,Tuberculostatic Agents,Antitubercular Drugs,Agent, Anti-Tuberculosis,Agent, Antitubercular,Agent, Tuberculostatic,Anti Tuberculosis Agent,Anti Tuberculosis Agents,Anti Tuberculosis Drug,Anti Tuberculosis Drugs,Drug, Anti-Tuberculosis,Drug, Antitubercular
D013055 Spectrophotometry, Infrared Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) IR Spectra,Infrared Spectrophotometry,IR Spectras,Spectra, IR
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell

Related Publications

Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
February 2023, Chemistry & biodiversity,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
December 2002, Journal of medicinal chemistry,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
November 1999, Ceska a Slovenska farmacie : casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
November 2016, Bioorganic & medicinal chemistry,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
September 2023, ACS omega,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
June 2001, European journal of medicinal chemistry,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
July 2013, European journal of medicinal chemistry,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
September 2023, Molecules (Basel, Switzerland),
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
August 2020, Molecular diversity,
Marta Kucerova-Chlupacova, and Jiri Kunes, and Vladimir Buchta, and Marcela Vejsova, and Veronika Opletalova
March 2005, Organic & biomolecular chemistry,
Copied contents to your clipboard!