Effect of the superoxide dismutase inhibitor, diethyldithiocarbamate, on the cytotoxicity of mitomycin antibiotics. 1989

C A Pritsos, and S R Keyes, and A C Sartorelli
Department of Pharmacology, Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06510.

Mitomycin C (MC) and its structural analogs porfiromycin (PM), BMY-25282 and BL-6783 are toxic to EMT6 cells under aerobic and hypoxic conditions. The mitomycin antibiotics are hypothesized to exert cytotoxicity under hypoxic conditions by cross-linking DNA following reductive activation, while aerobic cytotoxicity may involve DNA cross-linking by these agents and/or damage due to the generation of oxygen radicals. Previous findings (Pritsos and Sartorelli, 1986) indicated that the rank order of cytotoxicity for a series of mitomycins was the same as the rank order for the rate of oxygen consumption induced by these agents. As an additional approach to explore the role of oxygen radicals in the aerobic cytotoxicity of the four agents studied, EMT6 cells were treated with the mitomycins in the presence of the superoxide dismutase inhibitor diethyldithiocarbamate (DETC). DETC, which decreased superoxide dismutase activity in EMT6 cells, increased the cytotoxicity of BMY-25282 and BL-6783 by half an order of magnitude, but did not affect the toxicity of PM or MC to these cells. DNA cross-links, a proposed cytotoxic lesion induced by BMY-25282, however, were not detectably increased in EMT6 cells exposed to this agent in the presence of DETC in spite of the large increase in cytotoxicity under these treatment conditions. No single strand breaks were detected in cells exposed to either BMY-25282 or BMY-25282 plus DETC. The findings support the concept that oxygen radicals may have a role in the aerobic cytotoxicity of some of the mitomycin antibiotics, and that the lesions responsible for cytotoxicity produced by oxygen radicals may not reside entirely at the level of DNA.

UI MeSH Term Description Entries
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011160 Porfiromycin Toxic antibiotic of the mitomycin group, obtained from MITOMYCIN and also from Streptomyces ardus and other species. It is proposed as an antineoplastic agent, with some antibiotic properties. Methylmitomycin C
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004050 Ditiocarb A chelating agent that has been used to mobilize toxic metals from the tissues of humans and experimental animals. It is the main metabolite of DISULFIRAM. Diethyldithiocarbamate,Diethylcarbamodithioic Acid,Diethyldithiocarbamic Acid,Dithiocarb,Ditiocarb Sodium,Ditiocarb, Ammonium Salt,Ditiocarb, Bismuth Salt,Ditiocarb, Lead Salt,Ditiocarb, Potassium Salt,Ditiocarb, Sodium Salt,Ditiocarb, Sodium Salt, Trihydrate,Ditiocarb, Tin(4+) Salt,Ditiocarb, Zinc Salt,Imuthiol,Sodium Diethyldithiocarbamate,Thiocarb,Zinc Diethyldithiocarbamate,Ammonium Salt Ditiocarb,Bismuth Salt Ditiocarb,Diethyldithiocarbamate, Sodium,Diethyldithiocarbamate, Zinc,Lead Salt Ditiocarb,Potassium Salt Ditiocarb,Sodium Salt Ditiocarb,Sodium, Ditiocarb,Zinc Salt Ditiocarb
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000332 Aerobiosis Life or metabolic reactions occurring in an environment containing oxygen. Aerobioses

Related Publications

C A Pritsos, and S R Keyes, and A C Sartorelli
January 1988, Doklady Akademii nauk SSSR,
C A Pritsos, and S R Keyes, and A C Sartorelli
December 1979, Zeitschrift fur Naturforschung. Section C, Biosciences,
C A Pritsos, and S R Keyes, and A C Sartorelli
August 1980, Radiation research,
C A Pritsos, and S R Keyes, and A C Sartorelli
February 1987, Nihon Shokakibyo Gakkai zasshi = The Japanese journal of gastro-enterology,
C A Pritsos, and S R Keyes, and A C Sartorelli
January 1991, Free radical research communications,
C A Pritsos, and S R Keyes, and A C Sartorelli
January 1983, Farmakologiia i toksikologiia,
C A Pritsos, and S R Keyes, and A C Sartorelli
November 1979, The Journal of biological chemistry,
C A Pritsos, and S R Keyes, and A C Sartorelli
April 1979, Lancet (London, England),
C A Pritsos, and S R Keyes, and A C Sartorelli
January 1989, Scandinavian journal of gastroenterology. Supplement,
Copied contents to your clipboard!