Does beta-adrenoceptor activation stimulate Ca2+ mobilization and inositol trisphosphate formation in parotid acinar cells? 1989

A R Hughes, and H Takemura, and J W Putney
Calcium Regulation Section, National Institute of Environmental Health Sciences, National Institute of Health, North Carolina.

The effects of the beta-adrenoceptor agonist, isoprenaline, on Ca2+ mobilization and inositol phosphate formation in parotid acinar cells were examined. Isoprenaline (2 microM) failed to increase cytosolic [Ca2+] in acinar cells, as measured by Fura-2 fluorescence, even in the presence of a phosphodiesterase inhibitor. Likewise, neither the 8-bromo nor the dibutyryl derivatives of cAMP (both at 2 mM concentration) increased [Ca2+]i. However, in confirmation of results previously published, a higher concentration of isoprenaline (200 microM) increased cytosolic [Ca2+]i of rat parotid acinar cells, from 104 +/- 4 nM to 151 +/- 18 nM. The increase in [Ca2+]i in response to isoprenaline, while transient in the absence of extracellular Ca2+, was sustained in Ca2(+)-containing medium. This isoprenaline-stimulated Ca2+ signal was more potently antagonized by phentolamine than by propranolol, suggesting that the higher concentration of isoprenaline activated alpha-adrenoceptors. Furthermore, the Ca2+ signal generated in response to the alpha-adrenoceptor agonist, phenylephrine, also was blocked by the same concentrations of propranolol necessary to block the effects of isoprenaline, suggesting that propranolol may block alpha-adrenoceptors under certain experimental conditions. The high concentration of (-)isoprenaline (200 microM) also increased inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate formation 45% within 30 s. Analogous to the increase in intracellular Ca2+, the formation of inositol phosphates stimulated by isoprenaline was more potently antagonized by the alpha-adrenoceptor antagonist, phentolamine, than by the beta-adrenoceptor antagonist, propranolol, again suggesting that isoprenaline interacts with alpha-adrenoceptors on parotid cells. Thus, the effects of isoprenaline on [Ca2+]i do not appear to be mediated by cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008688 Methacholine Compounds A group of compounds that are derivatives of beta-methylacetylcholine (methacholine). Compounds, Methacholine
D010306 Parotid Gland The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR. Gland, Parotid,Glands, Parotid,Parotid Glands
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

A R Hughes, and H Takemura, and J W Putney
September 1988, The Journal of biological chemistry,
A R Hughes, and H Takemura, and J W Putney
January 1985, The Biochemical journal,
A R Hughes, and H Takemura, and J W Putney
February 1987, Journal of dental research,
A R Hughes, and H Takemura, and J W Putney
November 1985, The Biochemical journal,
A R Hughes, and H Takemura, and J W Putney
February 1990, The Biochemical journal,
Copied contents to your clipboard!