Laboratory experiments on stranding of Anopheles larvae under different shoreline environmental conditions. 2015

Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
Ralph M Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, USA. enori@mit.edu.

BACKGROUND One of the concerns for future malaria epidemiology is the elevated risks of malaria around an ever-increasing number of dam sites. Controlling larval populations around reservoirs behind dams by manipulating the water levels of reservoirs could be an effective and sustainable measure for suppressing malaria epidemics; however, the effectiveness of the water-level manipulation and the contributing mechanisms have been poorly studied. In this paper, we focus on how water recession may lead to larval stranding. METHODS Larvae of An. albimanus were studied to assess their susceptibility to stranding under different conditions representing reservoir shoreline environments in an experimental tank (50 cm × 100 cm). The tank was initially seeded with 80 larvae uniformly, and the numbers of larvae stranded on land and remaining in water were counted (summed up to recovered larvae), following the recession of water. The vertical water drawdown rate and the proportion of stranded larvae to recovered larvae (p) were measured. Shoreline conditions tested were inclinations of shore slopes (2% and 4%) and surface types (smooth, vegetated, rough, ridged). RESULTS For the 2% slopes, the proportions of stranded larvae (p) increased by about 0.002, 0.004, and 0.010 as the water drawdown rate increased by a centimeter per day on the smooth, rough, and vegetated surfaces, respectively. p for the 4% slopes were smaller than for the 2% slopes. Unlike other surface conditions, no significant correlation between p and the drawdown rate was observed on the ridged surface. CONCLUSIONS Larger proportions of Anopheles larvae were stranded at higher water drawdown rates, on smaller reservoir slopes, and under rough or vegetated surface conditions. Three mechanisms of larval stranding were identified: falling behind shoreline recession; entrapment in small closed water bodies; and inhabitation in shallow areas. Depending on the local vectors of Anopheles mosquitoes, the conditions for their favorable breeding sites correspond to the conditions for large larval stranding. If these conditions are met, water-level manipulation could be an effective measure to control malaria along shorelines of reservoirs behind dams.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008288 Malaria A protozoan disease caused in humans by four species of the PLASMODIUM genus: PLASMODIUM FALCIPARUM; PLASMODIUM VIVAX; PLASMODIUM OVALE; and PLASMODIUM MALARIAE; and transmitted by the bite of an infected female mosquito of the genus ANOPHELES. Malaria is endemic in parts of Asia, Africa, Central and South America, Oceania, and certain Caribbean islands. It is characterized by extreme exhaustion associated with paroxysms of high FEVER; SWEATING; shaking CHILLS; and ANEMIA. Malaria in ANIMALS is caused by other species of plasmodia. Marsh Fever,Plasmodium Infections,Remittent Fever,Infections, Plasmodium,Paludism,Fever, Marsh,Fever, Remittent,Infection, Plasmodium,Plasmodium Infection
D009032 Mosquito Control The reduction or regulation of the population of mosquitoes through chemical, biological, or other means. Control, Mosquito
D011157 Population Dynamics The pattern of any process, or the interrelationship of phenomena, which affects growth or change within a population. Malthusianism,Neomalthusianism,Demographic Aging,Demographic Transition,Optimum Population,Population Decrease,Population Pressure,Population Replacement,Population Theory,Residential Mobility,Rural-Urban Migration,Stable Population,Stationary Population,Aging, Demographic,Decrease, Population,Decreases, Population,Demographic Transitions,Dynamics, Population,Migration, Rural-Urban,Migrations, Rural-Urban,Mobilities, Residential,Mobility, Residential,Optimum Populations,Population Decreases,Population Pressures,Population Replacements,Population Theories,Population, Optimum,Population, Stable,Population, Stationary,Populations, Optimum,Populations, Stable,Populations, Stationary,Pressure, Population,Pressures, Population,Replacement, Population,Replacements, Population,Residential Mobilities,Rural Urban Migration,Rural-Urban Migrations,Stable Populations,Stationary Populations,Theories, Population,Theory, Population,Transition, Demographic,Transitions, Demographic
D004196 Disease Outbreaks Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS. Outbreaks,Infectious Disease Outbreaks,Disease Outbreak,Disease Outbreak, Infectious,Disease Outbreaks, Infectious,Infectious Disease Outbreak,Outbreak, Disease,Outbreak, Infectious Disease,Outbreaks, Disease,Outbreaks, Infectious Disease
D005618 Fresh Water Water containing no significant amounts of salts, such as water from RIVERS and LAKES. Freshwater,Fresh Waters,Freshwaters,Water, Fresh,Waters, Fresh
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000852 Anopheles A genus of mosquitoes (CULICIDAE) that are known vectors of MALARIA. Anopheles gambiae
D014881 Water Supply Means or process of supplying water (as for a community) usually including reservoirs, tunnels, and pipelines and often the watershed from which the water is ultimately drawn. (Webster, 3d ed) Supplies, Water,Supply, Water,Water Supplies

Related Publications

Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
November 2007, Environmental science and pollution research international,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
January 2017, Journal of medical entomology,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
April 1962, Zeitschrift fur Tropenmedizin und Parasitologie,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
April 1987, Medical and veterinary entomology,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
December 1997, Journal of vector ecology : journal of the Society for Vector Ecology,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
November 2016, Harmful algae,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
February 1976, The Journal of applied bacteriology,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
January 1985, Revista cubana de medicina tropical,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
January 2003, Applied microbiology and biotechnology,
Noriko Endo, and Anthony E Kiszewski, and Elfatih A B Eltahir
January 1975, Parassitologia,
Copied contents to your clipboard!