Human alveolar macrophages release a factor that inhibits phagocyte function. 1989

Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510.

Human alveolar macrophages release in vitro a factor that inhibits both random migration and chemotaxis of human polymorphonuclear neutrophils (PMN). This factor is not cytotoxic and is recovered in culture supernatants of alveolar cells from most nonsmoking normal subjects. The inhibitor can be detected 30 min after cell cultures are established and is still produced after 24 h in culture. Its release was inhibited by cycloheximide. When supernatants are separated by molecular sieving (I-60 Waters HPLC column), most of the inhibitory activity is recovered in the low-molecular-weight fractions of the chromatogram (less than 1,000 D). The inhibitor has a broad spectrum of activity against known chemoattractants in that it reduces significantly the chemotaxis of PMN induced by the formyl peptide FMLP, by the complement fragment C5a, and by leukotriene B4; it also decreases the chemotactic activity associated with a monocyte-derived interleukin 1 preparation and the chemotactic activity derived from alveolar macrophage culture supernatants. The inhibitory factor is partially heat labile, is sensitive to aminopeptidase M, and is nonpolar. Both phorbol myristate acetate (PMA) and FMLP-induced superoxide release by PMN are diminished significantly in the presence of this inhibitory factor (p less than 0.01 for PMA and p less than 0.05 for FMLP). The inhibitor also reduces monocyte chemotaxis but has no effect on monocyte random migration. Finally, studies with [3H]FMLP indicate that this inhibitor does not act at the site of receptor binding on PMN. Thus, human alveolar macrophages can release in vitro both neutrophil chemotactic factors and an apparent neutrophil-inhibiting factor that may modulate positively and negatively the movement and the respiratory burst of neutrophils in the alveolar space.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
February 1992, International journal of immunopharmacology,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
October 2020, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
September 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
May 1994, American journal of respiratory cell and molecular biology,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
December 1992, Journal of leukocyte biology,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
January 1988, Respiration; international review of thoracic diseases,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
July 1981, Chest,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
January 1979, Journal of the Reticuloendothelial Society,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
July 1996, The Journal of infectious diseases,
Y Sibille, and W W Merrill, and G P Naegel, and S B Care, and J A Cooper, and H Y Reynolds
May 1997, European journal of pharmacology,
Copied contents to your clipboard!