Differential expression of CD11b/CD18 (Mo1) and myeloperoxidase genes during myeloid differentiation. 1989

A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
Charles A. Dana Research Institute, Beth Israel Hospital, Boston, MA 02215.

During the course of differentiation of early human myeloid cells toward monocytes and granulocytes, cell surface expression of the cell adhesion molecule, CD11b/CD18 (Mo1) increases dramatically and expression of myeloperoxidase (MPO), a bacteriocidal enzyme, decreases markedly. Using the inducible promyelocytic cell line HL-60 as a model, we studied the mRNA expression of these genes. Differentiation of these cells along both a monocytic and a granulocytic pathway demonstrated that the mRNA levels of the two subunits of CD11b/CD18 increased in a pattern temporally and quantitatively similar to the increase in cell surface expression of this heterodimer. In contrast, the expression of MPO mRNA decreased in a temporal and quantitative pattern similar to the known decrease in MPO protein during differentiation, suggesting that regulation of these myeloid-specific proteins may occur at the level of mRNA expression. These findings have important implications with regard to the nature of the block in differentiation in acute nonlymphocytic leukemia and the regulation of myeloid gene expression.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation

Related Publications

A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
December 1989, The Journal of biological chemistry,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
February 1985, Blood,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
November 1989, Biochemical and biophysical research communications,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
August 1988, Journal of cellular physiology,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
January 2005, Proceedings of the National Academy of Sciences of the United States of America,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
August 2008, Circulation research,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
October 1990, British journal of haematology,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
October 1989, Inflammation,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
August 1997, Journal of cardiothoracic and vascular anesthesia,
A G Rosmarin, and S C Weil, and G L Rosner, and J D Griffin, and M A Arnaout, and D G Tenen
October 1997, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!