Two monoclonal antibodies identify thymic-repopulating cells in mouse bone marrow. 1989

G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
Department of Pathology, Stanford University School of Medicine, CA 94305.

The progenitor cells in the bone marrow that home to and repopulate the thymus have been incompletely characterized. In particular, it is not clear whether thymocytes differentiate directly from pluripotent hemopoietic stem cells that seed to the thymus, or whether T lymphoid-committed stem cells (prothymocytes) arise in the bone marrow before the thymic migration. In order to resolve this question, we have used mAb specific for cell-surface Ag to identify the bone marrow cells which can seed to and repopulate the thymus of irradiated mice. We report here that the majority of thymic-repopulating cells in mouse bone marrow express low levels of the Thy-1 Ag (Thy-1lo) plus high levels of a newly described Ag termed stem cell Ag (Sca-1). Two distinct populations of thymic-repopulating Thy-1loSca-1+ cells in mouse bone marrow can be discriminated based on expression of any of a number of hemolymphoid lineage-specific (Lin) markers. Thus, Thy-1loLin-Sca-1+ and Thy-1loLin+Sca-1+ fractions of bone marrow contain thymic-repopulating cells. A second Ag, stem cell Ag-2 (Sca-2), is expressed by Thy-1loLin+Sca-1+ cells but not by Thy-1loLin-Sca-1+ cells. The Thy-1loLin-Sca-1+ fraction expresses intermediate levels of the phagocyte glycoprotein-1 Ag, and comprises 30% of the Thy-1loLin- bone marrow cells, which have previously been shown to be highly enriched in pluripotent hemopoietic stem cells. By facilitating the isolation of highly purified subpopulations of bone marrow cells that can repopulate the thymus, Sca-1 and Sca-2 should provide an experimental tool for describing the developmental potential of such bone marrow subsets.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell

Related Publications

G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
July 1994, Blood,
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
November 1991, Thymus,
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
September 1971, Journal of the National Cancer Institute,
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
March 1977, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
January 1982, Stem cells,
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
July 1968, Science (New York, N.Y.),
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
January 1994, Important advances in oncology,
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
November 2002, The Israel Medical Association journal : IMAJ,
G J Spangrude, and J Klein, and S Heimfeld, and Y Aihara, and I L Weissman
December 1988, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!