Cloning and nucleotide sequence analyses of 11 genome segments of two American and one British equine rotavirus strains. 2015

Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016 Chongqing, China; Epidemiology Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Building 50, Room 6308, 50 South Drive, MSC 8026, Bethesda, MD 20892-8026, USA.

Group A equine rotavirus (ERV) is the main cause of diarrhea in foals and causes severe economic loss due to morbidity and mortality on stud farming worldwide. Molecular evolution of equine rotaviruses remains understudies. In this study, whole-genomic analysis of 2 group A ERV, FI-14 (G3P[12]), H-2 (G3P[12]) isolated from American, and FI23 (G14P[12]) from British was carried out and genotype constellations were determined as G3-P[12]-I6-R2-C2-M3-A10-N2-T3-E2-H7 for FI-14; G14-P[12]-I2-R2-C2-M3-A10-N2-T3-E2-H7 for FI23; and G3-P[12]-I6-R2-C2-M3-A10-N2-T3-E2-H7 for H-2, respectively. With the exception of the VP7 and VP6 gene, 2 G3P[12] strains (FI-14 and H-2) and one G14P[12] strain (FI23) were highly related genetically. Of note, the VP6 genotype of H-2 strain was previously reported to be I2, however, sequence and phylogenetic analyses demonstrated that it was I6. Therefore, it showed that G3P[12] ERV strains and G14P[12] ERV strains bore a distinct VP6 genotype: I6 for G3P[12] strains and I2 for G14P[12] strains. Moreover, it demonstrated that T-cell epitope 299P-300P/Q residues (PP/Q) of VP6 may be considered as I2 ERV typical molecular marker, which facilitates the analysis of the molecular evolution of equine rotaviruses.

UI MeSH Term Description Entries
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006113 United Kingdom Country in northwestern Europe including Great Britain and the northern one-sixth of the island of Ireland, located between the North Sea and north Atlantic Ocean. The capital is London. Great Britain,Isle of Man
D006734 Horse Diseases Diseases of domestic and wild horses of the species Equus caballus. Equine Diseases,Disease, Equine,Disease, Horse,Diseases, Equine,Diseases, Horse,Equine Disease,Horse Disease
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D012400 Rotavirus Infections Infection with any of the rotaviruses. Specific infections include human infantile diarrhea, neonatal calf diarrhea, and epidemic diarrhea of infant mice. Infection, Rotavirus,Infections, Rotavirus,Rotavirus Infection
D012401 Rotavirus A genus of REOVIRIDAE, causing acute gastroenteritis in BIRDS and MAMMALS, including humans. Transmission is horizontal and by environmental contamination. Seven species (Rotaviruses A thru G) are recognized. Neonatal Calf Diarrhea Virus,Rotaviruses

Related Publications

Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
August 1982, Journal of virology,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
December 2001, Virus genes,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
January 1980, Nucleic acids research,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
November 1982, Nucleic acids research,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
January 1988, Nucleic acids research,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
October 1989, Nucleic acids research,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
June 1989, The Journal of general virology,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
February 1984, Nucleic acids research,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
March 1988, The Journal of general virology,
Yongping Ma, and Xiaobo Wen, and Yasutaka Hoshino, and L Yuan
May 1991, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
Copied contents to your clipboard!