Pyruvate kinase isozymes from the green alga, Selenastrum minutum. II. Kinetic and regulatory properties. 1989

M Lin, and D H Turpin, and W C Plaxton
Department of Biology, Queen's University, Kingston, Ontario, Canada.

The kinetic and regulatory properties of two pyruvate kinase isozymes, PKp and PKc (apparent chloroplastic and cytosolic isozymes, respectively) from the green alga Selenastrum minutum were studied. The two isozymes differed greatly in several kinetic properties. Although both isozymes showed hyperbolic substrate saturation kinetics, the apparent Michaelis constants for PEP and ADP were about twofold and fourfold lower, respectively, for PKc as compared with PKp. ADP was the preferred nucleotide substrate for both isozymes. However, PKc utilized alternate nucleotides far more effectively than did PKp. PKc and PKp also differed strongly in the effect of activators and inhibitors on the enzymes. Although both isozymes were activated by dihydroxyacetone phosphate (DHAP) with a similar activation constant of about 30 microM, this activator (0.5 mM) caused an approximate 30% increase in the Vmax of PKc, but had no effect on the Vmax of PKp. PKp, but not PKc, was inhibited by ribose 5-phosphate, ribulose 1,5-bisphosphate, 2-phosphoglycerate, phosphoglycolate, and malate. Both isozymes were inhibited by MgATP, Mg2citrate, Mg2oxalate, and Pi. PKc was far more sensitive to inhibition by Pi, as compared with PKp. Pi was a competitive inhibitor of PKc with respect to phosphoenolpyruvate (PEP) (Ki = 1.3 mM). Glutamate was a potent inhibitor of PKc, but had no effect on PKp. In contrast with Pi, glutamate was a mixed-type inhibitor of PKc with respect to PEP (Ki = 0.7 mM). DHAP facilitated the binding of PEP by both isozymes and reversed or relieved the inhibition of PKc by Pi and/or glutamate. The regulatory properties of PKp indicate that it is likely less active in the light and more active in the dark. The in vivo activity of PKc is probably regulated by the relative cytosolic levels of DHAP, Pi, and glutamate; this provides a rationale for the activation of algal cytosolic pyruvate kinase which occurs during periods of enhanced ammonia assimilation.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus

Related Publications

M Lin, and D H Turpin, and W C Plaxton
July 2002, Plant & cell physiology,
M Lin, and D H Turpin, and W C Plaxton
April 1991, Plant physiology,
M Lin, and D H Turpin, and W C Plaxton
September 1969, The Journal of biological chemistry,
Copied contents to your clipboard!