Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan. 2015

Jayanthi Abraham, and Sivagnanam Silambarasan
Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India, jayanthi.abraham@gmail.com.

Endosulfan and their metabolites can be detected in soils with a history of endosulfan application. Microbial degradation offers an effective approach to remove toxicants, and in this study, Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 were isolated through enrichment technique. The biodegradation of endosulfan and its metabolites rate constant (k) and DT50 were determined through first-order kinetic models. E. asburiae JAS5 degraded the endosulfan, and its metabolites in liquid medium was characterized by the k which was 0.382 day(-1) (α-endosulfan), 0.284 day(-1) (β-endosulfan) and 0.228 day(-1) (endosulfan sulphate), and DT50 was 1.8 day (α-endosulfan), 2.4 days (β-endosulfan) and 3.0 days (endosulfan sulphate). The α-endosulfan, β-endosulfan and endosulfan sulphate metabolites were present in the liquid medium that was degraded by E. cloacae JAS7 which was characterized by the k of 0.391, 0.297 day(-1) and 0.273 day(-1), and DT50 was 1.7, 2.3 and 2.5 days, respectively. The infrared spectrum of endosulfan degraded sample in the aqueous medium by E. asburiae JAS5 and E. cloacae JAS7 showed a band at 1402 cm(-1) which is the characteristics of COOH group. E. asburiae JAS5 and E. cloacae JAS7 strains also showed the ability of plant growth promoting traits such as indole-3-acetic acid (IAA) production, organic acids production and solubilization of various inorganic phosphates. E. asburiae JAS5 solubilized 324 ± 2 μg ml(-1) of tricalcium phosphate, 296 ± 6 μg ml(-1) of dicalcium phosphate and 248 ± 5 μg ml(-1) of zinc phosphate, whereas E. cloacae JAS7 solubilized 338 ± 5, 306 ± 4 and 268 ± 3 μg ml(-1) of tricalcium phosphate, dicalcium phosphate and zinc phosphate, respectively. The IAA production by JAS5 and JAS7 strains were estimated to be 38.6 ± 0.3 and 46.6 ± 0.5 μg ml(-1), respectively. These bacterial strains form a potential candidate for bioremediation of pesticide-contaminated agricultural fields. In addition, it has been demonstrated that the development of powder formulation has several advantages including high cell count, longer shelf life, greater protection against environmental stresses and increased field efficacy.

UI MeSH Term Description Entries
D007210 Indoleacetic Acids Acetic acid derivatives of the heterocyclic compound indole. (Merck Index, 11th ed) Auxin,Auxins,Indolylacetic Acids,Acids, Indoleacetic,Acids, Indolylacetic
D010575 Pesticides Chemicals used to destroy pests of any sort. The concept includes fungicides (FUNGICIDES, INDUSTRIAL); INSECTICIDES; RODENTICIDES; etc. Pesticide
D004726 Endosulfan A polychlorinated compound used for controlling a variety of insects. It is practically water-insoluble, but readily adheres to clay particles and persists in soil and water for several years. Its mode of action involves repetitive nerve-discharges positively correlated to increase in temperature. This compound is extremely toxic to most fish. (From Comp Biochem Physiol (C) 1993 Jul;105(3):347-61) Thiodan,Thiodon,Thiotox,alpha-Endosulfan,beta-Endosulfan,alpha Endosulfan,beta Endosulfan
D000383 Agriculture The science, art or practice of cultivating soil, producing crops, and raising livestock. Agronomy,Agricultural Development,Farming,Agronomies,Development, Agricultural
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D016972 Enterobacter cloacae A species of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs in water, sewage, soil, meat, hospital environments, and on the skin and in the intestinal tract of man and animals as a commensal.
D063245 Plant Development Processes orchestrated or driven by a plethora of genes, plant hormones, and inherent biological timing mechanisms facilitated by secondary molecules, which result in the systematic transformation of plants and plant parts, from one stage of maturity to another. Plant Morphogenesis,Development, Plant,Developments, Plant,Morphogeneses, Plant,Morphogenesis, Plant,Plant Developments,Plant Morphogeneses

Related Publications

Jayanthi Abraham, and Sivagnanam Silambarasan
August 2012, Journal of bacteriology,
Jayanthi Abraham, and Sivagnanam Silambarasan
March 2024, Journal of xenobiotics,
Jayanthi Abraham, and Sivagnanam Silambarasan
December 2016, Journal of basic microbiology,
Jayanthi Abraham, and Sivagnanam Silambarasan
June 2010, Journal of applied microbiology,
Jayanthi Abraham, and Sivagnanam Silambarasan
June 2018, Journal of microbiology and biotechnology,
Jayanthi Abraham, and Sivagnanam Silambarasan
June 2017, Genomics data,
Jayanthi Abraham, and Sivagnanam Silambarasan
September 2021, Microbiology resource announcements,
Copied contents to your clipboard!