Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. 1989

V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138.

A direct quantitative and phenotypic cytofluorographic analysis of TCR-gamma/delta+ lymphocytes as well as an immunohistologic study of their tissue distribution and microanatomy was made possible by the availability of two mAbs (anti-TCR-delta 1 and anti-C gamma M1) specific for framework determinants on human TCR gamma and delta chains, respectively. TCR-gamma/delta+ lymphocytes, ranging between greater than 0.5 and 16% of CD3+ cells, were found in fetal and postnatal thymus, fetal and adult peripheral lymphoid organs, and adult peripheral blood. While TCR-gamma/delta+ lymphocytes comprised a small subpopulation of T cells (mean, approximately 4%) occasionally greater than 10-16% of CD3+ cells expressed TCR-gamma/delta. Virtually all TCR-gamma/delta+ thymocytes/lymphocytes expressed CD7, CD2, and CD5 but were heterogeneous with respect to their expression of CD1, CD4, CD8, CD28, CD11b, CD16, and Leu-7. Human TCR-gamma/delta+ cells populate both organized lymphoid tissues (thymus, tonsil, lymphnode, and spleen) as well as the gut- and skin-associated lymphoid systems at similar frequencies without obvious tropism for epithelial microenvironments. TCR-gamma/delta+ lymphocytes tend to be located within a given organ wherever TCR-alpha/beta+ lymphocytes are found. This study shows that TCR-gamma/delta+ lymphocytes constitute a small but numerically important, phenotypically diverse T cell population distributed throughout the body. These results support the concept that TCR-gamma/delta+ cells comprise a distinct, functionally heterogeneous, mature T cell sublineage that may substantially broaden the T cell repertoire at all immunologically relevant sites.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008221 Lymphoid Tissue Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS. Lymphatic Tissue,Lymphatic Tissues,Lymphoid Tissues,Tissue, Lymphatic,Tissue, Lymphoid,Tissues, Lymphatic,Tissues, Lymphoid
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte

Related Publications

V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
October 1991, Immunology,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
November 1990, Archives of disease in childhood,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
June 1990, The Journal of investigative dermatology,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
August 1992, Immunology,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
May 1995, Scandinavian journal of immunology,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
January 1992, Chemical immunology,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
July 1991, Human pathology,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
May 1994, Journal of pediatric gastroenterology and nutrition,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
February 1989, The Journal of experimental medicine,
V Groh, and S Porcelli, and M Fabbi, and L L Lanier, and L J Picker, and T Anderson, and R A Warnke, and A K Bhan, and J L Strominger, and M B Brenner
November 1992, Journal of the National Cancer Institute,
Copied contents to your clipboard!