The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation. 2015

Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
Department of Biology, Syracuse University, Syracuse, New York, USA.

In the bacterium Myxococcus xanthus, starvation triggers the formation of multicellular fruiting bodies containing thousands of stress-resistant spores. Recent work showed that fruiting body development is regulated by a cascade of transcriptional activators called enhancer binding proteins (EBPs). The EBP Nla6 is a key component of this cascade; it regulates the promoters of other EBP genes, including a downstream-functioning EBP gene that is crucial for sporulation. In recent expression studies, hundreds of Nla6-dependent genes were identified, suggesting that the EBP gene targets of Nla6 may be part of a much larger regulon. The goal of this study was to identify and characterize genes that belong to the Nla6 regulon. Accordingly, a direct repeat [consensus, C(C/A)ACGNNGNC] binding site for Nla6 was identified using in vitro and in vivo mutational analyses, and the sequence was subsequently used to find 40 potential developmental promoter (88 gene) targets. We showed that Nla6 binds to the promoter region of four new targets (asgE, exo, MXAN2688, and MXAN3259) in vitro and that Nla6 is important for their normal expression in vivo. Phenotypic studies indicate that all of the experimentally confirmed targets of Nla6 are primarily involved in sporulation. These targets include genes involved in transcriptional regulation, cell-cell signal production, and spore differentiation and maturation. Although sporulation occurs late in development, all of the developmental loci analyzed here show an Nla6-dependent burst in expression soon after starvation is induced. This finding suggests that Nla6 starts preparing cells for sporulation very early in the developmental process. OBJECTIVE Bacterial development yields a remarkable array of complex multicellular forms. One such form, which is commonly found in nature, is a surface-associated aggregate of cells known as a biofilm. Mature biofilms are structurally complex and contain cells that are highly resistant to antibacterial agents. When starving, the model bacterium Myxococcus xanthus forms a biofilm containing a thin mat of cells and multicellular structures that house a highly resistant cell type called a myxospore. Here, we identify the promoter binding site of the transcriptional activator Nla6, identify genes in the Nla6 regulon, and show that several of the genes in the Nla6 regulon are important for production of stress-resistant spores in starvation-induced M. xanthus biofilms.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D016941 Myxococcus xanthus A species of gliding bacteria found on soil as well as in surface fresh water and coastal seawater.

Related Publications

Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
January 2010, Journal of bacteriology,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
October 1982, Journal of bacteriology,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
November 1989, Journal of bacteriology,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
May 2017, Journal of bacteriology,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
July 2004, Microbiology (Reading, England),
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
August 2014, Journal of bacteriology,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
July 2004, Journal of bacteriology,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
September 2012, Journal of bacteriology,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
September 1989, Molecular & general genetics : MGG,
Krista M Giglio, and Chengjun Zhu, and Courtney Klunder, and Shelley Kummer, and Anthony G Garza
February 2016, Journal of bacteriology,
Copied contents to your clipboard!