Antipseudomonal agents exhibit differential pharmacodynamic interactions with human polymorphonuclear leukocytes against established biofilms of Pseudomonas aeruginosa. 2015

Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
Infectious Diseases Laboratory, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece.

Pseudomonas aeruginosa is the most common pathogen infecting the lower respiratory tract of cystic fibrosis (CF) patients, where it forms tracheobronchial biofilms. Pseudomonas biofilms are refractory to antibacterials and to phagocytic cells with innate immunity, leading to refractory infection. Little is known about the interaction between antipseudomonal agents and phagocytic cells in eradication of P. aeruginosa biofilms. Herein, we investigated the capacity of three antipseudomonal agents, amikacin (AMK), ceftazidime (CAZ), and ciprofloxacin (CIP), to interact with human polymorphonuclear leukocytes (PMNs) against biofilms and planktonic cells of P. aeruginosa isolates recovered from sputa of CF patients. Three of the isolates were resistant and three were susceptible to each of these antibiotics. The concentrations studied (2, 8, and 32 mg/liter) were subinhibitory for biofilms of resistant isolates, whereas for biofilms of susceptible isolates, they ranged between sub-MIC and 2 × MIC values. The activity of each antibiotic alone or in combination with human PMNs against 48-h mature biofilms or planktonic cells was determined by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. All combinations of AMK with PMNs resulted in synergistic or additive effects against planktonic cells and biofilms of P. aeruginosa isolates compared to each component alone. More than 75% of CAZ combinations exhibited additive interactions against biofilms of P. aeruginosa isolates, whereas CIP had mostly antagonistic interaction or no interaction with PMNs against biofilms of P. aeruginosa. Our findings demonstrate a greater positive interaction between AMK with PMNs than that observed for CAZ and especially CIP against isolates of P. aeruginosa from the respiratory tract of CF patients.

UI MeSH Term Description Entries
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002442 Ceftazidime Semisynthetic, broad-spectrum antibacterial derived from CEPHALORIDINE and used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime Anhydrous,Ceftazidime Pentahydrate,Fortaz,Fortum,GR-20263,LY-139381,Pyridinium, 1-((7-(((2-amino-4-thiazolyl)((1-carboxy-1-methylethoxy)imino)acetyl)amino)-2-carboxy-8-oxo-5-thia-1-azabicyclo(4.2.0)oct-2-en-3-yl)methyl)-, inner salt, pentahydrate, (6R-(6alpha,7beta(Z)))-,Tazidime,GR 20263,GR20263,LY 139381,LY139381
D002939 Ciprofloxacin A broad-spectrum antimicrobial carboxyfluoroquinoline. Bay-09867,Ciprinol,Cipro,Ciprofloxacin Hydrochloride,Ciprofloxacin Hydrochloride Anhydrous,Ciprofloxacin Monohydrochloride Monohydrate,Anhydrous, Ciprofloxacin Hydrochloride,Bay 09867,Bay09867,Hydrochloride Anhydrous, Ciprofloxacin,Hydrochloride, Ciprofloxacin,Monohydrate, Ciprofloxacin Monohydrochloride,Monohydrochloride Monohydrate, Ciprofloxacin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000583 Amikacin A broad-spectrum antibiotic derived from KANAMYCIN. It is reno- and oto-toxic like the other aminoglycoside antibiotics. A.M.K,Amikacin Sulfate,Amikacina Medical,Amikacina Normon,Amikafur,Amikalem,Amikason's,Amikayect,Amikin,Amiklin,Amukin,BB-K 8,BB-K8,Biclin,Biklin,Gamikal,Kanbine,Oprad,Yectamid,BB K 8,BB K8,BBK 8,BBK8,Medical, Amikacina,Normon, Amikacina,Sulfate, Amikacin
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013183 Sputum Material coughed up from the lungs and expectorated via the mouth. It contains MUCUS, cellular debris, and microorganisms. It may also contain blood or pus. Sputum, Induced,Induced Sputum,Induced Sputums,Sputums,Sputums, Induced
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
August 2012, Infection and immunity,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
October 1995, The Japanese journal of antibiotics,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
January 1995, Chemotherapy,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
January 1989, International archives of allergy and applied immunology,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
October 1986, Infection and immunity,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
July 1990, Infection and immunity,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
August 2007, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
May 1986, Diagnostic microbiology and infectious disease,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
January 1995, Chemotherapy,
Athanasios Chatzimoschou, and Maria Simitsopoulou, and Charalampos Antachopoulos, and Thomas J Walsh, and Emmanuel Roilides
January 1984, Infection and immunity,
Copied contents to your clipboard!