Molecular and biochemical characterisation of abomasal nematode parasites Teladorsagia circumcincta and Haemonchus contortus phosphofructokinases and their recognition by the immune host. 2015

S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
AgResearch Ltd, Private Bag 11-008, Palmerston North, New Zealand. Electronic address: saleh.umair@agresearch.co.nz.

Full length cDNAs encoding phosphofructokinase (PFK) were cloned from Teladorsagia circumcincta (TcPFK) and Haemonchus contortus (HcPFK). TcPFK (2361 bp) and HcPFK (2367 bp) cDNA encoded 787 and 789 amino acid proteins respectively. The predicted amino acid sequences showed 98% similarity with each other and 70% with a Caenorhabditis elegans PFK. Substrate binding sites were completely conserved in both proteins. Soluble N-terminal His-tagged PFK proteins were expressed in Escherichia coli strain BL21, purified and characterised. The recombinant TcPFK and HcPFK had very similar kinetic properties: the pH optima were pH 7.0, Km for fructose 6-phosphate was 0.50 ± 0.01 and 0.55 ± 0.01 mM respectively when higher (inhibiting concentration, 0.3 mM) ATP concentration was used and the curve was sigmoidal. The Vmax for TcPFK and HcPFK were 1110 ± 16 and 910 ± 10 nM min(-1 )mg(-1) protein respectively. Lower ATP concentration (non-inhibiting, 0.01 mM) did not change the Vmax for TcPFK and HcPFK (890 ± 10 and 860 ± 12 nM min(-1 )mg(-1) protein) but the substrate affinity doubled and Km for fructose 6-phosphate were 0.20 ± 0.05 and 0.25 ± 0.01 mM respectively. Recognition of TcPFK and HcPFK by mucosal and serum antibodies in nematode exposed animals demonstrates antigenicity and suggests involvement in the host response to nematode infection.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006188 Haemonchiasis Infection with nematodes of the genus HAEMONCHUS, characterized by digestive abnormalities and anemia similar to that from hookworm infestation. Haemonchiases
D006189 Haemonchus A genus of parasitic nematode worms which infest the duodenum and stomach of domestic and wild herbivores, which ingest it with the grasses (POACEAE) they eat. Infestation of man is accidental. Hemonchus
D000018 Abomasum The fourth stomach of ruminating animals. It is also called the "true" stomach. It is an elongated pear-shaped sac lying on the floor of the abdomen, on the right-hand side, and roughly between the seventh and twelfth ribs. It leads to the beginning of the small intestine. (From Black's Veterinary Dictionary, 17th ed) Abomasums
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
June 2013, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
February 2011, Experimental parasitology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
January 2017, Experimental parasitology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
July 2013, Experimental parasitology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
October 2011, Experimental parasitology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
January 2011, Experimental parasitology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
May 2013, Experimental parasitology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
May 2012, Experimental parasitology,
S Umair, and E Dagnicourt, and J S Knight, and H V Simpson, and A Pernthaner
August 2016, Veterinary parasitology,
Copied contents to your clipboard!