Neurochemical characteristics of aluminum-induced neurofibrillary degeneration in rabbits. 1989

M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
Department of Neurology, Massachusetts General Hospital, Boston 02114.

Aluminum-induced neurofibrillary degeneration in rabbits is known to affect particular populations of neurons. The neurotransmitter alterations which accompany aluminum neurofibrillary degeneration were examined in order to assess how closely they mimic those of Alzheimer's disease. There was a significant reduction in choline acetyltransferase activity in entorhinal cortex and hippocampus as well as significant reductions in cortical concentrations of serotonin and norepinephrine in the aluminum-treated rabbits. Significant reductions in glutamate, aspartate and taurine were found in frontoparietal and posterior parietal cortex. Concentrations of GABA were unchanged in cerebral cortex. Both substance P and cholecystokinin immunoreactivity were significantly reduced in entorhinal cortex but there were no significant changes in somatostatin, neuropeptide Y and vasoactive intestinal polypeptide. The five neuropeptides were unaffected in striatum, thalamus, cerebellum and brainstem. Neurochemical changes were found in the regions with the most neurofibrillary degeneration while regions with little or no neurofibrillary degeneration were unaffected. The reductions in choline acetyltransferase activity, serotinin and noradrenaline suggest that some neuronal populations preferentially affected in Alzheimer's disease are also affected by aluminum-induced neurofibrillary degeneration; however, the cortical somatostatin deficit which is a feature of Alzheimer's disease is not replicated in the aluminum model.

UI MeSH Term Description Entries
D009454 Neurofibrils The delicate interlacing threads, formed by aggregations of neurofilaments and neurotubules, coursing through the CYTOPLASM of the body of a NEURON and extending from one DENDRITE into another or into the AXON. Neurofibril
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000535 Aluminum A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98. Aluminium,Aluminium-27,Aluminum-27,Aluminium 27,Aluminum 27
D000544 Alzheimer Disease A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57) Acute Confusional Senile Dementia,Alzheimer's Diseases,Dementia, Alzheimer Type,Dementia, Senile,Presenile Alzheimer Dementia,Senile Dementia, Alzheimer Type,Alzheimer Dementia,Alzheimer Disease, Early Onset,Alzheimer Disease, Late Onset,Alzheimer Sclerosis,Alzheimer Syndrome,Alzheimer Type Senile Dementia,Alzheimer's Disease,Alzheimer's Disease, Focal Onset,Alzheimer-Type Dementia (ATD),Dementia, Presenile,Dementia, Primary Senile Degenerative,Early Onset Alzheimer Disease,Familial Alzheimer Disease (FAD),Focal Onset Alzheimer's Disease,Late Onset Alzheimer Disease,Primary Senile Degenerative Dementia,Senile Dementia, Acute Confusional,Alzheimer Dementias,Alzheimer Disease, Familial (FAD),Alzheimer Diseases,Alzheimer Type Dementia,Alzheimer Type Dementia (ATD),Alzheimers Diseases,Dementia, Alzheimer,Dementia, Alzheimer-Type (ATD),Familial Alzheimer Diseases (FAD),Presenile Dementia,Sclerosis, Alzheimer,Senile Dementia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
January 1995, Brain research,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
August 1976, Acta neuropathologica,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
January 1988, Neurotoxicology,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
May 1980, Annals of neurology,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
January 1988, Neurotoxicology,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
May 1982, Experimental neurology,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
November 1974, Brain research,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
January 1982, Neurobiology of aging,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
March 1979, Brain research,
M F Beal, and M F Mazurek, and D W Ellison, and N W Kowall, and P R Solomon, and W W Pendlebury
January 1987, Journal of neural transmission. Supplementum,
Copied contents to your clipboard!