Effect of distance and orientation between arginine-302, histidine-322, and glutamate-325 on the activity of lac permease from Escherichia coli. 1989

J A Lee, and I B Püttner, and H R Kaback
Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110.

lac permease of Escherichia coli was modified by site-directed mutagenesis in order to investigate the effects of polarity, distance, and orientation between the components of a putative H+ relay system (Arg302/His322/Glu325) postulated to be involved in lactose-coupled H+ translocation. The importance of polarity between His322 and Glu325 was studied by interchanging the residues, and the modified permease--H322E/E325H--is inactive in all modes of translocation. The effect of distance and/or orientation between His322 and Glu325 was investigated by interchanging Glu325 with Val326, thereby moving the carboxylate one residue around putative helix X. The resulting permease molecule--E325V/V326E--is also completely inactive; control mutations, E325V [Carrasco, N., Püttner, I. B., Antes, L. M., Lee, J. A., Larigan, J. D., Lolkema, J. S., Roepe, P. D., & Kaback, H. R. (1989) Biochemistry (second paper of three in this issue)], and E325A/V326E, indicate that a Glu residue at position 326 inactivates the permease. The wild-type orientation between His and Glu was then restored by further mutation of E325V/V326E to introduce a His residue into position 323 or by interchanging Met323 with His322. The resulting permease molecules--M323H/E325V/V326E and H322M/M323H/E325V/V326E--contain the wild-type His/Glu orientation, but the His/Glu ion pair is rotated about the helical axis by 100 degrees relative to Arg302 in putative helix IX. Both mutants are inactive with respect to all modes of translocation. The results provide strong support for the contention that the polarity between His322 and Glu325 and the geometric relationship between Arg302, His322, and Glu325 are critical for permease activity.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007785 Lactose A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Anhydrous Lactose,Lactose, Anhydrous
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine

Related Publications

J A Lee, and I B Püttner, and H R Kaback
October 1987, Biochemistry,
J A Lee, and I B Püttner, and H R Kaback
September 1992, The Journal of biological chemistry,
J A Lee, and I B Püttner, and H R Kaback
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
J A Lee, and I B Püttner, and H R Kaback
March 1988, Proceedings of the National Academy of Sciences of the United States of America,
J A Lee, and I B Püttner, and H R Kaback
October 1985, Biochemical and biophysical research communications,
J A Lee, and I B Püttner, and H R Kaback
January 1985, Current topics in cellular regulation,
J A Lee, and I B Püttner, and H R Kaback
January 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!