Structural and evolutionary comparisons of four alleles of the mouse Igk-J locus which encodes immunoglobulin kappa light chain joining (J kappa) segments. 1989

P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
Department of Microbiology, University of Texas, Austin 78712.

The Igk-J locus of the mouse encodes the immunoglobulin kappa light chain joining (J) segments. Four Igk-J alleles have been described on the basis of restriction enzyme length polymorphisms. The nucleotide sequences of the Igk-Ja allele (type strain, C.C58), Igk-Jc allele (type strain, SJL/J), and Igk-Jd allele (type strain, SK/CamRk) have been determined and are compared with the previously reported Igk-Jb allele sequence (type strain, BALB/c). The mouse sequences are also compared with published sequences for rat and human J kappa sequences. Far more differences were found between the Igk-Ja allele and the other mouse alleles than between any two of the latter. These result in two amino acid substitutions which distinguish the J2 and J3' segments of the Igk-Ja allele from the other three alleles. Use of the Phylogenetic Analysis Using Parsimony program to generate a phylogenetic tree strongly indicates that after divergence from the rat ancestor, there appears to have been an early split between the Igk-Ja allele and the evolutionary precursor of the other mouse alleles. There also appears to have been far less divergence from the ancestral condition in the Igk-Ja allele than in the other alleles. Also, the presence of only one convergent mutation among the four mouse alleles provides strong evidence against any crossing over within the Igk-J locus during the history of these alleles. Finally, the differences in rates of evolution of the Igk-J alleles are in marked contrast to the relatively uniform rates of divergence of four alleles of a mouse V kappa gene, Igk-VSer.

UI MeSH Term Description Entries
D007133 Immunoglobulin Joining Region A segment of the immunoglobulin heavy chains, encoded by the IMMUNOGLOBULIN HEAVY CHAIN GENES in the J segment where, during the maturation of B-LYMPHOCYTES; the gene segment for the variable region upstream is joined to a constant region gene segment downstream. The exact position of joining of the two gene segments is variable and contributes to ANTIBODY DIVERSITY. It is distinguished from the IMMUNOGLOBULIN J CHAINS; a separate polypeptide that serves as a linkage piece in polymeric IGA or IGM. Joining Region, Ig,Immunoglobulin Joining Region Peptide Fragments,Ig Joining Region,Joining Region, Immunoglobulin
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph

Related Publications

P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
January 1989, Immunogenetics,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
January 1992, Immunogenetics,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
January 1995, Immunogenetics,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
August 1984, Proceedings of the National Academy of Sciences of the United States of America,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
May 2000, Immunogenetics,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
July 1980, Proceedings of the National Academy of Sciences of the United States of America,
P D Ponath, and R T Boyd, and D M Hillis, and P D Gottlieb
January 1998, Experimental and clinical immunogenetics,
Copied contents to your clipboard!