Sperm volumetric dynamics during in vitro capacitation process in bovine spermatozoa. 2015

M García-Herreros, and C L V Leal
1Faculty of Animal Science and Food Engineering (FZEA),Department of Veterinary Medicine,University of São Paulo (USP),Pirassununga,Brazil.

Previous studies have demonstrated that sperm head morphometry can be used as a potential diagnostic tool for detecting biophysical changes associated with sperm viability in bovine spermatozoa. In this study, sperm head morphometry was used to investigate its value as a biophysical marker for detecting volumetric changes in bovine spermatozoa under in vitro capacitating and non-capacitating incubation conditions. To further test this hypotesis, aliquots of pooled, washed bovine sperm were incubated in either Tyrode's complete medium with heparin (TCMH; a capacitating medium containing Ca2+, NaHCO3 and heparin), Tyrode's complete medium heparin-free (TCM; a medium containing just Ca2+ and NaHCO3) or Tyrode's basal medium (TBM; a non-capacitating medium free of Ca2+, NaHCO3 and heparin, used as control). Aliquots of sperm were processed for morphometric analysis at different incubation-time intervals (0, 3 and 6 h at 38°C), and the chlortetracycline assay was used simultaneously to confirm the ability of the sperm to undergo capacitation (B pattern) and the acrosome reaction (AR pattern) status in each medium. After 3 h of incubation under TCMH conditions, a significant increase was observed in the percentage of B and AR patterns and a significant decrease was found in all sperm morphometric parameters (P<0.01). Interestingly, after 6 h of incubation in TCMH, the percentage of B and AR patterns increased drastically over time and marked differences were found in the dimensional and shape parameters, which were significantly smaller compared with TBM or TCM media (P<0.001). Significant correlations were observed between sperm size and AR pattern (r=-0.875, P<0.01). In conclusion, sperm head morphometry can be used as a potential biophysical marker for detecting volumetric changes during capacitation process in bovine spermatozoa.

UI MeSH Term Description Entries
D008297 Male Males
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013075 Sperm Capacitation The structural and functional changes by which SPERMATOZOA become capable of oocyte FERTILIZATION. It normally requires exposing the sperm to the female genital tract for a period of time to bring about increased SPERM MOTILITY and the ACROSOME REACTION before fertilization in the FALLOPIAN TUBES can take place. Capacitation of Spermatozoa,Capacitation, Sperm,Spermatozoa Capacitation
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

M García-Herreros, and C L V Leal
February 2017, Theriogenology,
M García-Herreros, and C L V Leal
November 1995, Theriogenology,
M García-Herreros, and C L V Leal
January 1999, Theriogenology,
M García-Herreros, and C L V Leal
July 1996, Frontiers in bioscience : a journal and virtual library,
M García-Herreros, and C L V Leal
December 2019, Reproductive biology and endocrinology : RB&E,
M García-Herreros, and C L V Leal
April 1995, Molecular reproduction and development,
M García-Herreros, and C L V Leal
April 2004, Molecular reproduction and development,
M García-Herreros, and C L V Leal
November 1973, Biology of reproduction,
M García-Herreros, and C L V Leal
September 1986, The Journal of experimental zoology,
M García-Herreros, and C L V Leal
March 1992, Theriogenology,
Copied contents to your clipboard!