Histochemical localization of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine oxidation in the mouse brain. 1989

S R Vincent
Department of Psychiatry, University of British Columbia, Vancouver, Canada.

The sites in the mouse brain where 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine can be oxidized to the toxic metabolite 1-methyl-4-phenylpyridine were determined using a histochemical technique. The method involved the demonstration of monoamine oxidase activity using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as the substrate by means of a sensitive coupled peroxidase technique. The distribution of neurons displaying the ability to oxidize 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine via a monoamine oxidase catalysed reaction was compared to that of various amine systems identified with immunohistochemistry. Dopamine neurons, and in particular the nigrostriatal dopamine cells, did not display the capacity to oxidize 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Noradrenergic neurons showed intense monoamine oxidase activity when 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was used as substrate, and this activity was blocked by the monoamine oxidase-A inhibitor clorgyline. Serotonin neurons and histamine neurons were also able to oxidize 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The reaction in these neurons was blocked by deprenyl, an inhibitor of monoamine oxidase-B. Pretreatment with inhibitors of monoamine oxidase-B has been previously shown to prevent the neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on dopaminergic neurons. Therefore, since serotonin and histamine neurons are able to oxidize 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by means of monoamine oxidase-B, these neurons may be involved in the production of the toxic metabolites of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in vivo.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

S R Vincent
February 1987, Journal of the neurological sciences,
S R Vincent
January 1987, Ciba Foundation symposium,
S R Vincent
June 1989, The Journal of pharmacology and experimental therapeutics,
S R Vincent
February 2013, Metallomics : integrated biometal science,
S R Vincent
January 2006, Journal of applied genetics,
Copied contents to your clipboard!