Veratridine-induced phosphorylation and activation of tyrosine hydroxylase, and synthesis of catecholamines in cultured bovine adrenal medullary cells. 1989

Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.

The mechanism of the synthesis of catecholamines by veratridine was studied in cultured bovine adrenal medullary cells. (1) Veratridine increased the phosphorylation and activity of tyrosine hydroxylase as well as the synthesis of [14C]catecholamines from [14C]tyrosine, all of which were inhibited by tetrodotoxin. Veratridine-induced activation of tyrosine hydroxylase and synthesis of [14C]catecholamines were reduced in 20 mmol/l extracellular Na+ or in Ca2+-free medium. (2) 12-O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, increased the synthesis of [14C]catecholamines. In the presence of TPA, veratridine did not produce any additional increase in [14C]catecholamine synthesis. In protein kinase C-deficient cells which were prepared by pretreatment with 1 mumol/l TPA for 24 h, TPA failed to increase [14C]catecholamine synthesis and veratridine-induced [14C]catecholamine synthesis was suppressed by 50%. (3) Polymyxin B, an inhibitor of protein kinase C and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), an inhibitor of calmodulin, inhibited veratridine-stimulated synthesis of [14C]catecholamines as well as veratridine-induced influx of 22Na+ and 45Ca2+ with similar potencies. (4) In digitonin-permeabilized cells, polymyxin B attenuated the activation of tyrosine hydroxylase caused by Ca2+. These results suggest that veratridine-induced synthesis of catecholamines and activation of tyrosine hydroxylase were mediated by Ca2+-dependent phosphorylation of this enzyme, and protein kinase C may be responsible, at least in part, for this process.

UI MeSH Term Description Entries
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011112 Polymyxin B A mixture of polymyxins B1 and B2, obtained from BACILLUS POLYMYXA strains. They are basic polypeptides of about eight amino acids and have cationic detergent action on cell membranes. Polymyxin B is used for treatment of infections with gram-negative bacteria, but may be neurotoxic and nephrotoxic. Aerosporin,Polymyxin B Sulfate
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002132 Calcium Radioisotopes Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes. Radioisotopes, Calcium
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
February 1986, Journal of neurochemistry,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
July 1992, Journal of neurochemistry,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
February 1986, The Journal of biological chemistry,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
March 2011, Journal of neuroendocrinology,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
January 2014, Naunyn-Schmiedeberg's archives of pharmacology,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
December 1994, Molecular pharmacology,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
September 1983, The Journal of cell biology,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
May 1984, The Journal of biological chemistry,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
August 1978, The Journal of physiology,
Y Uezono, and N Yanagihara, and A Wada, and Y Koda, and K Yokota, and H Kobayashi, and F Izumi
January 1985, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!