Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. 2015

Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY (CKYN, AMS, BW, JSRF); Department of Medical Oncology, SIRIC, Institut Curie, Paris, France (FCB); Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY (JSRF).

Rapid advancements in massively parallel sequencing methods have enabled the analysis of breast cancer genomes at an unprecedented resolution, which have revealed the remarkable heterogeneity of the disease. As a result, we now accept that despite originating in the breast, estrogen receptor (ER)-positive and ER-negative breast cancers are completely different diseases at the molecular level. It has become apparent that there are very few highly recurrently mutated genes such as TP53, PIK3CA, and GATA3, that no two breast cancers display an identical repertoire of somatic genetic alterations at base-pair resolution and that there might not be a single highly recurrently mutated gene that defines each of the "intrinsic" subtypes of breast cancer (ie, basal-like, HER2-enriched, luminal A, and luminal B). Breast cancer heterogeneity, however, extends beyond the diversity between tumors. There is burgeoning evidence to demonstrate that at least some primary breast cancers are composed of multiple, genetically diverse clones at diagnosis and that metastatic lesions may differ in their repertoire of somatic genetic alterations when compared with their respective primary tumors. Several biological phenomena may shape the reported intratumor genetic heterogeneity observed in breast cancers, including the different mutational processes and multiple types of genomic instability. Harnessing the emerging concepts of the diversity of breast cancer genomes and the phenomenon of intratumor genetic heterogeneity will be essential for the development of optimal methods for diagnosis, disease monitoring, and the matching of patients to the drugs that would benefit them the most.

UI MeSH Term Description Entries
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers

Related Publications

Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
September 2005, Nature,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
November 2013, Blood,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
June 2014, Translational cancer research,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
November 2023, Journal of bioethical inquiry,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
January 2006, Methods in molecular biology (Clifton, N.J.),
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
January 2020, Clinical chemistry,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
June 2022, Nature communications,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
October 2010, Human molecular genetics,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
January 2009, Nature protocols,
Charlotte K Y Ng, and Anne M Schultheis, and Francois-Clement Bidard, and Britta Weigelt, and Jorge S Reis-Filho
May 2010, BMC genomics,
Copied contents to your clipboard!