Gene polymorphism identified by PvuII in familial lipoprotein lipase deficiency. 1989

T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

We previously demonstrated that the PvuII polymorphism is a useful marker to analyze the genetic defects in familial lipoprotein lipase (LPL) deficiency. In this study, we have mapped this polymorphic site and cloned the gene fragments containing this site from a patient and a normal subject. Comparative sequence analysis revealed that a C-T transition occurred in the gene of the patient at the PvuII site in the intron 6. Interestingly, the sequence near the PvuII site showed a significant homology to the consensus sequence of the 3' splice site. In addition, the insertional event into the human LPL gene, which was recently reported for a population of Caucasian patients, was not observed for eight unrelated Japanese patients, suggesting that genetic defects underlying familial LPL deficiency should be heterogeneous among races.

UI MeSH Term Description Entries
D006951 Hyperlipoproteinemias Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation. Hyperlipoproteinemia
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008072 Hyperlipoproteinemia Type I An inherited condition due to a deficiency of either LIPOPROTEIN LIPASE or APOLIPOPROTEIN C-II (a lipase-activating protein). The lack of lipase activities results in inability to remove CHYLOMICRONS and TRIGLYCERIDES from the blood which has a creamy top layer after standing. Apolipoprotein C-II Deficiency,Hyperchylomicronemia, Familial,Lipoprotein Lipase Deficiency, Familial,Burger-Grutz Syndrome,C-II Anapolipoproteinemia,Chylomicronemia, Familial,Familial Fat-Induced Hypertriglyceridemia,Familial Hyperchylomicronemia,Familial Hyperlipoproteinemia Type 1,Familial LPL Deficiency,Familial Lipoprotein Lipase Deficiency,Hyperlipemia, Essential Familial,Hyperlipemia, Idiopathic, Burger-Grutz Type,Hyperlipoproteinemia Type Ia,Hyperlipoproteinemia Type Ib,Hyperlipoproteinemia, Type I,Hyperlipoproteinemia, Type Ia,Hyperlipoproteinemia, Type Ib,LIPD Deficiency,Lipase D Deficiency,Lipoprotein Lipase Deficiency,Anapolipoproteinemia, C-II,Anapolipoproteinemias, C-II,Apolipoprotein C II Deficiency,Apolipoprotein C-II Deficiencies,Burger Grutz Syndrome,Burger-Grutz Syndromes,C-II Anapolipoproteinemias,Chylomicronemias, Familial,Deficiencies, Apolipoprotein C-II,Deficiencies, Familial LPL,Deficiencies, LIPD,Deficiencies, Lipase D,Deficiencies, Lipoprotein Lipase,Deficiency, Apolipoprotein C-II,Deficiency, Familial LPL,Deficiency, LIPD,Deficiency, Lipase D,Deficiency, Lipoprotein Lipase,Essential Familial Hyperlipemia,Essential Familial Hyperlipemias,Familial Chylomicronemia,Familial Chylomicronemias,Familial Fat Induced Hypertriglyceridemia,Familial Fat-Induced Hypertriglyceridemias,Familial Hyperchylomicronemias,Familial Hyperlipemia, Essential,Familial Hyperlipemias, Essential,Familial LPL Deficiencies,Fat-Induced Hypertriglyceridemia, Familial,Fat-Induced Hypertriglyceridemias, Familial,Hyperchylomicronemias, Familial,Hyperlipemias, Essential Familial,Hyperlipoproteinemia Type Ias,Hyperlipoproteinemia Type Ibs,Hyperlipoproteinemia Type Is,Hyperlipoproteinemias, Type I,Hyperlipoproteinemias, Type Ia,Hyperlipoproteinemias, Type Ib,Hypertriglyceridemia, Familial Fat-Induced,Hypertriglyceridemias, Familial Fat-Induced,LIPD Deficiencies,LPL Deficiencies, Familial,LPL Deficiency, Familial,Lipase D Deficiencies,Lipase Deficiencies, Lipoprotein,Lipoprotein Lipase Deficiencies,Syndrome, Burger-Grutz,Syndromes, Burger-Grutz,Type I Hyperlipoproteinemia,Type I Hyperlipoproteinemias,Type Ia Hyperlipoproteinemia,Type Ia Hyperlipoproteinemias,Type Ib Hyperlipoproteinemia,Type Ib Hyperlipoproteinemias
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
June 1993, Genetika,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
January 2001, Ryoikibetsu shokogun shirizu,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
July 2007, Nihon rinsho. Japanese journal of clinical medicine,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
March 2001, Nihon rinsho. Japanese journal of clinical medicine,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
January 1998, Ryoikibetsu shokogun shirizu,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
January 1993, Human heredity,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
December 1991, The Journal of clinical investigation,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
August 1999, Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
January 2007, Disease markers,
T Gotoda, and M Senda, and T Murase, and N Yamada, and F Takaku, and Y Furuichi
November 2000, Biochimica et biophysica acta,
Copied contents to your clipboard!