Ex vivo pharmacokinetic and pharmacodynamic analysis of valnemulin against Mycoplasma gallisepticum S6 in Mycoplasma gallisepticum and Escherichia coli co-infected chickens. 2015

Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.

Pharmacokinetic and pharmacodynamic (PK/PD) indices against Mycoplasma gallisepticum (MG) S6 were investigated in an ex vivo PK/PD model following oral administration of valnemulin to chickens co-infected with M. gallisepticum and Escherichia coli. The minimum inhibitory concentrations (MICs) for valnemulin against MG S6 in artificial medium and chicken serum were determined. In vitro time-killing curves were established according to a series of multiples of the MIC value in an artificial medium, and ex vivo time-killing curves were established in serum samples obtained from infected chickens at different time points after oral administration with an initial titer of 1 × 10(6) color change units (CCU)/mL MG S6. The sigmoid Emax model was used to provide 24 h area under concentration-time curve/minimum inhibitory concentration ratios (AUC0-24h/MIC) for mycoplasmastasis, mycoplasmacidal activity and mycoplasmal elimination, respectively. The inoculum size and micro or macro methods exhibited little effect on MIC determination of MG, whereas matrix had a large effect. The rapid killing activity observed in in vitro time-killing curves seems to indicate that valnemulin was mycoplasmacidal and concentration dependent against MG. The AUC0-24h/MIC ratio for mycoplasmacidal activity and mycoplasmal elimination was 1321 h and 1960 h, respectively. A dosage regimen of 12.4 mg/kg/day and 18.3 mg/kg/day valnemulin was calculated for mycoplasmacidal activity and mycoplasmal elimination against MG S6, respectively.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009175 Mycoplasma Infections Infections with species of the genus MYCOPLASMA. Eperythrozoonosis,Infections, Mycoplasma,Eperythrozoonoses,Infection, Mycoplasma,Mycoplasma Infection
D011201 Poultry Diseases Diseases of birds which are raised as a source of meat or eggs for human consumption and are usually found in barnyards, hatcheries, etc. The concept is differentiated from BIRD DISEASES which is for diseases of birds not considered poultry and usually found in zoos, parks, and the wild. Disease, Poultry,Diseases, Poultry,Poultry Disease
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004224 Diterpenes Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate. Diterpene,Diterpenes, Cembrane,Diterpenes, Labdane,Diterpenoid,Labdane Diterpene,Norditerpene,Norditerpenes,Norditerpenoid,Cembranes,Diterpenoids,Labdanes,Norditerpenoids,Cembrane Diterpenes,Diterpene, Labdane,Labdane Diterpenes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
February 2014, Journal of veterinary pharmacology and therapeutics,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
January 1972, National Institute of Animal Health quarterly,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
November 2018, BMC veterinary research,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
January 2022, Frontiers in veterinary science,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
November 2021, Poultry science,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
January 2024, Frontiers in veterinary science,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
July 2011, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
October 2013, Journal of veterinary pharmacology and therapeutics,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
January 1990, Avian diseases,
Xia Xiao, and Jian Sun, and Yi Chen, and Mengting Zou, and Dong-Hao Zhao, and Ya-Hong Liu
September 2021, Pathogens (Basel, Switzerland),
Copied contents to your clipboard!