Ultrastructural localization of choline acetyltransferase in the rat rostral ventrolateral medulla: evidence for major synaptic relations with non-catecholaminergic neurons. 1989

T A Milner, and V M Pickel, and R Giuliano, and D J Reis
Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021.

Pharmacological and biochemical studies suggest that interactions between cholinergic and catecholaminergic and catecholaminergic neurons, particularly those of the C1 adrenergic cell group, in the rostral ventrolateral medulla (RVL) may be important in cardiovascular control. Ultrastructural localization of choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine, and its relation to neurons exhibiting immunoreactivity for catecholamine- (tyrosine hydroxylase; TH) or adrenaline (phenylethanolamine-N-methyltransferase; PNMT) -synthesizing enzymes were examined in the RVL using dual immunoautoradiographic and peroxidase anti-peroxidase (PAP) labeling methods. By light microscopy, the ChAT-immunoreactive neurons were located both dorsally (i.e. the nucleus ambiguus) and ventromedially to those labeled with TH or PNMT (TH/PNMT). A few ChAT-labeled processes were dispersed among TH/PNMT-containing neurons with the majority of overlap immediately ventral to the nucleus ambiguus. By electron microscopy, ChAT-immunoreactivity (ChAT-I) was detected in neuronal perikarya, dendrites, axons and axon terminals and in the vascular endothelial cells of certain blood vessels. The ChAT-labeled perikarya in the ventromedial RVL were medium-sized (15-20 microns), elongated, contained abundant cytoplasm and had had slightly indented nuclei. Synaptic junctions on ChAT-immunoreactive perikarya and dendrites were primarily symmetric with 64% (45 out of 70) of the presynaptic terminals unlabeled. The remaining terminals were immunoreactive for ChAT (30%) or TH/PNMT (6%). Terminals with ChAT-I were large (0.8-2.0 microns) and contained numerous small clear vesicles and 1-2 dense core vesicles. Seventy-seven percent (112 out of 145) of the ChAT-labeled terminals formed symmetric synapses with unlabeled perikarya and dendrites, whereas only 8% were with TH/PNMT-labeled perikarya and dendrites, and 15% were with ChAT-immunoreactive perikarya and dendrites. We conclude (1) that cholinergic neurons in the RVL principally terminate on and receive input from non-catecholaminergic neurons, and (2) that the reported sympathetic activation following application of cholinergic agents to the RVL may be mediated by cholinergic inhibition of local inhibitory interneurons. The observed synapses between ChAT and TH/PNMT-containing neurons suggests that cholinergic and adrenergic neurons additionally may exert a minor reciprocal control on each other and thus may modulate their response to the more abundant input from afferents containing other transmitters.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

T A Milner, and V M Pickel, and R Giuliano, and D J Reis
September 1999, Brain research. Developmental brain research,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
February 2014, The Journal of comparative neurology,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
January 2008, Neuroscience letters,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
September 1994, Brain research,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
February 2004, Brain research,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
September 2017, Brain research bulletin,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
April 2001, Brain research. Brain research protocols,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
February 1998, Annals of neurology,
T A Milner, and V M Pickel, and R Giuliano, and D J Reis
December 2013, Journal of neurophysiology,
Copied contents to your clipboard!