Mechanism of recovery from acute virus infection. IX. Clearance of lymphocytic choriomeningitis (LCM) virus from the feet of mice undergoing LCM virus-specific delayed-type hypersensitivity reaction. 1989

D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, F.R.G.

As shown previously, after inoculation into the footpad of a mouse the lymphocytic choriomeningitis (LMC) virus multiplies locally. Beginning on day 6 or 7 after infection, the foot undergoes a delayed-type hypersensitivity (DTH) reaction which consists of two distinct phases that are mediated by CD8+ cells and CD4+ cells, respectively, and at about the same time the virus is eliminated. In general, for terminating infection of the mouse with LCM virus the CD8+ cytotoxic/suppressive T lymphocyte (CTL) is essential; we have now determined the cells that mediate control of the virus in a tissue undergoing a specific DTH reaction. Depletion, in infected mice, of all T lymphocytes by treatment with anti-Thy-1 monoclonal antibody prevented virus elimination from the foot, and the same was true when the CD8+ CTLs were removed. Depletion of the CD4+ helper/suppressor subset only marginally impaired the ability of the mice to rid themselves of the virus. The conclusion that here too the principal antiviral element is the CD8+ CTL was confirmed by experiments in which footpad-infected mice were adoptively immunized with virus-immune splenocytes from syngeneic mice selected for subclasses of T lymphocytes, or from mice differing in defined regions of the major histocompatibility complex (MHC), and also by experiments in which monocytes were virtually absent. However, CD8+ CTL alone or cells from MHC recombinant mice with identity in class I loci were never as antivirally active as unseparated splenocytes from syngeneic donor mice. Since the CD8+ cells' performance could be optimized by interleukin-2, we assume that the CD4+ T lymphocytes function as accessory cells; the same probably applies to monocytes.

UI MeSH Term Description Entries
D006968 Hypersensitivity, Delayed An increased reactivity to specific antigens mediated not by antibodies but by sensitized T CELLS. Hypersensitivity, Tuberculin-Type,Hypersensitivity, Type IV,Tuberculin-Type Hypersensitivity,Type IV Hypersensitivity,Delayed Hypersensitivity,Delayed Hypersensitivities,Hypersensitivity, Tuberculin Type,Tuberculin Type Hypersensitivity,Tuberculin-Type Hypersensitivities,Type IV Hypersensitivities
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008216 Lymphocytic Choriomeningitis A form of meningitis caused by LYMPHOCYTIC CHORIOMENINGITIS VIRUS. MICE and other rodents serve as the natural hosts, and infection in humans usually occurs through inhalation or ingestion of infectious particles. Clinical manifestations include an influenza-like syndrome followed by stiff neck, alterations of mentation, ATAXIA, and incontinence. Maternal infections may result in fetal malformations and injury, including neonatal HYDROCEPHALUS, aqueductal stenosis, CHORIORETINITIS, and MICROCEPHALY. (From Joynt, Clinical Neurology, 1996, Ch26, pp1-3) Armstrong Syndrome,Armstrong's Syndrome,Encephalomyelitis, Lymphocytic Choriomeningitis Virus,Lymphocytic Choriomeningitis Virus Encephalomyelitis,Choriomeningitis, Lymphocytic,Syndrome, Armstrong,Syndrome, Armstrong's
D008217 Lymphocytic choriomeningitis virus The type species of ARENAVIRUS, part of the Old World Arenaviruses (ARENAVIRUSES, OLD WORLD), producing a silent infection in house and laboratory mice. In humans, infection with LCMV can be inapparent, or can present with an influenza-like illness, a benign aseptic meningitis, or a severe meningoencephalomyelitis. The virus can also infect monkeys, dogs, field mice, guinea pigs, and hamsters, the latter an epidemiologically important host. LCM Viruses,LCMV,LCM Virus,Lymphocytic choriomeningitis viruses
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D013047 Specific Pathogen-Free Organisms Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free. Pathogen-Free Organisms,Specific Pathogen Free,Organism, Pathogen-Free,Organism, Specific Pathogen-Free,Organisms, Pathogen-Free,Organisms, Specific Pathogen-Free,Pathogen Free Organisms,Pathogen Free, Specific,Pathogen Frees, Specific,Pathogen-Free Organism,Pathogen-Free Organism, Specific,Pathogen-Free Organisms, Specific,Specific Pathogen Free Organisms,Specific Pathogen-Free Organism

Related Publications

D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
January 1989, Advances in experimental medicine and biology,
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
June 1983, Scandinavian journal of immunology,
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
January 1986, Medical microbiology and immunology,
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
January 1985, Medical microbiology and immunology,
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
January 1985, Journal of immunology (Baltimore, Md. : 1950),
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
April 1987, Journal of immunology (Baltimore, Md. : 1950),
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
August 1988, The Journal of general virology,
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
January 1954, The Journal of infectious diseases,
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
July 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
D Moskophidis, and L Fang, and J Gossmann, and F Lehmann-Grube
February 1983, Scandinavian journal of immunology,
Copied contents to your clipboard!