Analysis of the lateral geniculate nucleus in dichromatic and trichromatic marmosets. 2015

Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia.

Marmosets are diurnal New World monkeys that show sex-linked cone photopigment polymorphism, whereby all males and some females are dichromats ("red-green colorblind"), but most females show trichromatic color vision. Here we asked whether trichromats express chromatic-specific circuitry in the lateral geniculate nucleus (LGN). The volume of parvocellular (P), magnocellular (M), and koniocellular (K) layers was calculated in Nissl-stained sections from the LGN of adult marmosets (Callithrix jacchus; 10 trichromatic females; 2 dichromatic females; and 13 dichromatic males). Retinal ganglion cell axon terminals within the P and K layers were reconstructed and measured following anterograde tracer (dextran) injections. We show that there is little difference in LGN layer volume with respect to age, weight, or sex of the animals, or between dichromatic and trichromatic phenotypes. The morphology of retinal ganglion cell terminals was largely indistinguishable on comparing dichromats and trichromats, and likewise on comparing terminals representing peripheral or foveal retina. We conclude that the LGN circuits we studied are largely independent of red-green color vision phenotype and visual field location.

UI MeSH Term Description Entries
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002144 Callithrix A genus of the subfamily CALLITRICHINAE occurring in forests of Brazil and Bolivia and containing seventeen species. Callithrix jacchus,Hapale,Marmoset, Common,Marmoset, Short-Tusked,Marmosets,Common Marmoset,Common Marmosets,Marmoset,Marmoset, Short Tusked,Short-Tusked Marmoset,Short-Tusked Marmosets
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D005260 Female Females
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate

Related Publications

Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
December 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
September 2002, The Journal of comparative neurology,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
January 1998, Visual neuroscience,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
July 2017, The Journal of physiology,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
August 2001, Current biology : CB,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
September 2005, Neuroreport,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
February 2016, Reviews in the neurosciences,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
January 1987, Experimental brain research,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
August 1993, American journal of ophthalmology,
Thomas FitzGibbon, and Bahar Eriköz, and Ulrike Grünert, and Paul R Martin
January 1995, American journal of ophthalmology,
Copied contents to your clipboard!