Implication of α2β1 integrin in anoikis of MCF-7 human breast carcinoma cells. 2015

G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia. 1938berman@gmail.com.

Silencing of α2β1 integrin expression significantly promoted anchorage-dependent apoptosis (anoikis) and drastically reduced clonal activity of MCF-7 human breast carcinoma cells. Depletion of α2β1 enhanced the production of apoptotic protein p53 and of inhibitor of cyclin-dependent protein kinases, p27, while downregulating antiapoptotic protein Bcl-2 and multifunctional protein cMyc. Blocking the expression of α2β1 had no effect on activity of protein kinase Akt, but it sharply increased the kinase activity of Erk1/2. Pharmacological inhibition of Erk1/2 had a minor effect on anoikis of control cells, while it reduced anoikis of cells with downregulated α2β1 to the level of control cells. The data show for the first time that integrin α2β1 is implicated in the protection of tumor cells from anoikis through a mechanism based on the inhibition of protein kinase Erk.

UI MeSH Term Description Entries
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D048049 Extracellular Signal-Regulated MAP Kinases A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS. ERK MAP Kinase,ERK MAP Kinases,Extracellular Signal-Regulated Kinase,Extracellular Signal-Regulated Kinases,Extracellular Signal-Regulated MAP Kinase,MAP Kinases, Extracellular Signal-Regulated,Extracellular Signal Regulated Kinase,Extracellular Signal Regulated Kinases,Extracellular Signal Regulated MAP Kinase,Extracellular Signal Regulated MAP Kinases,Kinase, ERK MAP,Kinase, Extracellular Signal-Regulated,Kinases, Extracellular Signal-Regulated,MAP Kinase, ERK,MAP Kinases, Extracellular Signal Regulated,Signal-Regulated Kinase, Extracellular
D050760 Cyclin-Dependent Kinase Inhibitor p27 A cyclin-dependent kinase inhibitor that coordinates the activation of CYCLIN and CYCLIN-DEPENDENT KINASES during the CELL CYCLE. It interacts with active CYCLIN D complexed to CYCLIN-DEPENDENT KINASE 4 in proliferating cells, while in arrested cells it binds and inhibits CYCLIN E complexed to CYCLIN-DEPENDENT KINASE 2. CDK Inhibitor p27,CDKN1B Protein,CDKN4 Protein,Cyclin-Dependent Kinase Inhibitor 1B,p27 CDK Inhibitor,p27 Kip1 Protein,p27Kip1 Protein,CDK Inhibitor, p27,Cyclin Dependent Kinase Inhibitor 1B,Cyclin Dependent Kinase Inhibitor p27,Kip1 Protein, p27,p27, CDK Inhibitor
D061986 MCF-7 Cells An estrogen responsive cell line derived from a patient with metastatic human breast ADENOCARCINOMA (at the Michigan Cancer Foundation.) MCF7 Cells,Michigan Cancer Foundation 7 Cells,Cell, MCF-7,Cell, MCF7,Cells, MCF-7,Cells, MCF7,MCF 7 Cells,MCF-7 Cell,MCF7 Cell
D020935 MAP Kinase Signaling System An intracellular signaling system involving the mitogen-activated protein kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade. MAP Kinase Cascade,MAP Kinase Module,MAP Kinase Signaling Cascade,MAP Kinase Signaling Pathway,MAP Kinase Signaling Pathways,ERK Pathway,ERK Signal Tranduction Pathway,ERK1 and ERK2 Pathway,ERK1-2 Pathway,JNK Pathway,JNK Signaling Pathway,MAP Kinase Modules,MAP Kinase Signaling Cascades,MEK-ERK Pathway,p38 Kinase Pathway,p38 Kinase Signaling Pathway,Cascade, MAP Kinase,ERK Pathways,ERK1 2 Pathway,ERK1-2 Pathways,JNK Pathways,JNK Signaling Pathways,Kinase Cascade, MAP,Kinase Pathway, p38,Kinase Pathways, p38,MAP Kinase Cascades,MEK ERK Pathway,MEK-ERK Pathways,Module, MAP Kinase,Pathway, ERK,Pathway, ERK1-2,Pathway, JNK,Pathway, JNK Signaling,Pathway, MEK-ERK,Pathway, p38 Kinase,Pathways, ERK,Pathways, ERK1-2,Pathways, JNK,Pathways, JNK Signaling,Pathways, MEK-ERK,Pathways, p38 Kinase,Signaling Pathway, JNK,Signaling Pathways, JNK,p38 Kinase Pathways
D023102 Anoikis APOPTOSIS triggered by loss of contact with the EXTRACELLULAR MATRIX.
D038982 Integrin alpha2beta1 An integrin found on fibroblasts, platelets, endothelial and epithelial cells, and lymphocytes where it functions as a receptor for COLLAGEN and LAMININ. Although originally referred to as the collagen receptor, it is one of several receptors for collagen. Ligand binding to integrin alpha2beta1 triggers a cascade of intracellular signaling, including activation of p38 MAP kinase. CD49b-CD29,Glycoprotein Ia-IIa,Platelet Membrane Glycoprotein Heterodimer Ia-IIa,VLA-2,Very Late Antigen-2,alpha2beta1Integrin,CD49b CD29,Glycoprotein Ia IIa,Late Antigen-2, Very,Platelet Membrane Glycoprotein Heterodimer Ia IIa,VLA 2,Very Late Antigen 2,alpha2beta1, Integrin

Related Publications

G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
April 2002, Oncogene,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
January 1982, Cancer chemotherapy and pharmacology,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
January 2004, Journal of cellular physiology,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
May 1998, Cancer letters,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
February 2000, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
January 2001, Archives of biochemistry and biophysics,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
May 1990, Journal of cellular physiology,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
June 2006, Zhonghua zhong liu za zhi [Chinese journal of oncology],
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
December 1980, Cancer letters,
G E Morozevich, and N I Kozlova, and O Y Susova, and P A Karalkin, and A E Berman
January 2015, Current drug targets,
Copied contents to your clipboard!