Intracellular calcium and hormone secretion in clonal AtT-20/D16-16 anterior pituitary cells. 1989

M Adler, and S L Sabol, and N Busis, and H C Pant
Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland.

Intracellular ionized Ca2+ concentration was measured in clonal mouse anterior pituitary tumor cells with the fluorescent Ca2+ indicator Quin-2. In control physiological solution, free cytoplasmic Ca2+ concentration was found to be 139 +/- 11 nM. Replacement of 50 mM NaCl by 50 mM KCl in the extracellular fluid caused a 29 mV depolarization and a 4.2-fold increase in the concentration of free cytoplasmic Ca2+. Under comparable depolarizing conditions, a specific influx of 2.66 nmole of 45Ca2+ per mg protein was detected 1 min after addition of high K+, accompanied by a marked increase in the initial rate of beta-endorphin secretion. In the absence of external Ca2+, depolarization by K+ produced little or no increase in either intracellular free Ca2+ or hormone release. Incubation of AtT-20/D16-16 cells in the secretagogue norepinephrine led to a depolarization accompanied by an increase in spontaneous action potential frequency and a marked elevation in cytosolic Ca2+ concentration. Exposure of cells to somatostatin, an inhibitor of hormone release, led to only transient decreases in burst frequency and no significant reduction in intracellular Ca2+ levels. These results indicate that in addition to intracellular Ca2+, other factors also control secretory activity in AtT-20/D16-16 anterior pituitary cells.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000634 Aminoquinolines Quinolines substituted in any position by one or more amino groups.

Related Publications

M Adler, and S L Sabol, and N Busis, and H C Pant
April 1996, The Journal of biological chemistry,
M Adler, and S L Sabol, and N Busis, and H C Pant
November 1992, Pflugers Archiv : European journal of physiology,
M Adler, and S L Sabol, and N Busis, and H C Pant
April 1988, Molecular pharmacology,
M Adler, and S L Sabol, and N Busis, and H C Pant
February 1977, Molecular and cellular endocrinology,
M Adler, and S L Sabol, and N Busis, and H C Pant
May 1984, Endocrinology,
M Adler, and S L Sabol, and N Busis, and H C Pant
March 2001, Wei sheng yan jiu = Journal of hygiene research,
M Adler, and S L Sabol, and N Busis, and H C Pant
April 1996, Endocrinology,
M Adler, and S L Sabol, and N Busis, and H C Pant
October 1990, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!