Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. 2015

Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702;

The expression level of HLA class-I proteins is known to influence pathological outcomes: pathogens downregulate HLA to evade host immune responses, host inflammatory reactions upregulate HLA, and differences among people with regard to the steady-state expression levels of HLA associate with disease susceptibility. Yet precise quantification of relative expression levels of the various HLA loci is difficult because of the tremendous polymorphism of HLA. We report relative expression levels of HLA-A, HLA-B, HLA-C, and HLA-E proteins for the specific haplotype A*02:01, B*44:02, C*05:01, which were characterized using two independent methods based on flow cytometry and mass spectrometry. PBLs from normal donors showed that HLA-A and HLA-B proteins are expressed at similar levels, which are 13-18 times higher than HLA-C by flow cytometry and 4-5 times higher than HLA-C by mass spectrometry; these differences may reflect variation in the conformation or location of proteins detected. HLA-E was detected at a level 25 times lower than that of HLA-C by mass spectrometry. Primary CD4(+) T cells infected with HIV in vitro were also studied because HIV downregulates selective HLA types. HLA-A and HLA-B were reduced on HIV-infected cells by a magnitude that varied between cells in an infected culture. Averaging all infected cells from an individual showed HLA-A to be 1-3 times higher and HLA-B to be 2-5 times higher than HLA-C by flow cytometry. These results quantify substantial differences in expression levels of the proteins from different HLA loci, which are very likely physiologically significant on both uninfected and HIV-infected cells.

UI MeSH Term Description Entries
D008297 Male Males
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015395 Histocompatibility Antigens Class I Membrane glycoproteins consisting of an alpha subunit and a BETA 2-MICROGLOBULIN beta subunit. In humans, highly polymorphic genes on CHROMOSOME 6 encode the alpha subunits of class I antigens and play an important role in determining the serological specificity of the surface antigen. Class I antigens are found on most nucleated cells and are generally detected by their reactivity with alloantisera. These antigens are recognized during GRAFT REJECTION and restrict cell-mediated lysis of virus-infected cells. Class I Antigen,Class I Antigens,Class I Histocompatibility Antigen,Class I MHC Protein,Class I Major Histocompatibility Antigen,MHC Class I Molecule,MHC-I Peptide,Class I Histocompatibility Antigens,Class I Human Antigens,Class I MHC Proteins,Class I Major Histocompatibility Antigens,Class I Major Histocompatibility Molecules,Human Class I Antigens,MHC Class I Molecules,MHC-I Molecules,MHC-I Peptides,Antigen, Class I,Antigens, Class I,I Antigen, Class,MHC I Molecules,MHC I Peptide,MHC I Peptides,Molecules, MHC-I,Peptide, MHC-I,Peptides, MHC-I
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015658 HIV Infections Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS). HTLV-III Infections,HTLV-III-LAV Infections,T-Lymphotropic Virus Type III Infections, Human,HIV Coinfection,Coinfection, HIV,Coinfections, HIV,HIV Coinfections,HIV Infection,HTLV III Infections,HTLV III LAV Infections,HTLV-III Infection,HTLV-III-LAV Infection,Infection, HIV,Infection, HTLV-III,Infection, HTLV-III-LAV,Infections, HIV,Infections, HTLV-III,Infections, HTLV-III-LAV,T Lymphotropic Virus Type III Infections, Human
D056426 Genetic Loci Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE. Genetic Locus,Loci, Genetic,Locus, Genetic

Related Publications

Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
December 1989, AIDS research and human retroviruses,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
August 2001, Journal of acquired immune deficiency syndromes (1999),
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
January 2004, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
August 1998, Human immunology,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
January 1992, Critical reviews in immunology,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
March 1994, Journal of virology,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
January 2016, European journal of immunology,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
November 2014, Journal of virology,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
November 1997, AIDS research and human retroviruses,
Richard Apps, and Zhaojing Meng, and Gregory Q Del Prete, and Jeffrey D Lifson, and Ming Zhou, and Mary Carrington
April 1992, Immunobiology,
Copied contents to your clipboard!