Shikonin protects chondrocytes from interleukin-1beta-induced apoptosis by regulating PI3K/Akt signaling pathway. 2015

Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
Department of Orthopedics, Qilu Hospital, Shandong University Jinan 250000, People's Republic of China ; Department of Orthopedics, Yantaishan Hospital Yantai 264000, People's Republic of China.

Chondrocyte apoptosis is mostly responsible for the development and progression of osteoarthritis. IL-1β is generally served as an agent that induces chondrocyte apoptosis. Shikonin exerts its anti-inflammatory effect on cartilage protection in vivo. We aimed to explore the protective effect of shikonin on interleukin-1beta (IL-1β)-induced chondrocyte apoptosis and the potential molecular mechanisms. Chondrocytes were isolated from the joints of newborn Sprague-Dawley rats. The MTT assay and LDH cell death assay were used to determine the cell viability and chondrocyte apoptosis was detected by Annexin-V/PI staining and nucleosomal degradation. The contents of phosphorylated-PI3K (p-PI3k), phosphorylated-Akt (p-Akt), Bcl-2, Bax, and cytochrome c were detected by Western blotting. A quantitative colorimetric assay was used to detect the caspase-3 activity. Our results showed that pretreatment with shikonin (4 μM) inhibited cytotoxicity and apoptosis induced by IL-1β (10 ng/ml) in chondrocytes. Shikonin pretreatment also decreased the activity of IL-1β that decreased Bcl-2 expression and levels of p-PI3K and p-Akt, and increased Bax expression, cytochrome c release, and caspase-3 activation. It also reversed the activity of IL-1β that promoted the synthesis of matrix metalloproteinase-13 and inhibited the expression of tissue inhibitor of metalloproteinase-1 expression, with the net effect of suppressing extracellular matrix degradation. These data suggested that shikonin may protect chondrocytes from apoptosis induced by IL-1β through the PI3K/Akt signaling pathway, by deactivating caspase-3.

UI MeSH Term Description Entries
D008297 Male Males
D009285 Naphthoquinones Naphthalene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. Naphthalenediones,Naphthazarins,Naphthoquinone
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
August 2019, Biochemical and biophysical research communications,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
January 2016, American journal of translational research,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
July 2006, European journal of pharmacology,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
September 2020, European review for medical and pharmacological sciences,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
March 2018, Inflammation,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
December 2015, Osteoarthritis and cartilage,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
August 2019, Cardiovascular toxicology,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
July 2014, International journal of molecular medicine,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
January 2009, Neuropharmacology,
Leisheng Wang, and Pengzhou Gai, and Renguo Xu, and Yanpin Zheng, and Shiqiao Lv, and Yu Li, and Shaoxian Liu
September 2020, Die Pharmazie,
Copied contents to your clipboard!