Exercise preconditioning attenuates pressure overload-induced pathological cardiac hypertrophy. 2015

Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University Shanghai, China ; Department of Cardiothoracic Surgery, No.401 Hospital of PLA Qingdao, China.

Pathological cardiac hypertrophy, a common response of the heart to a variety of cardiovascular diseases, is typically associated with myocytes remodeling and fibrotic replacement, cardiac dysfunction. Exercise preconditioning (EP) increases the myocardial mechanical load and enhances tolerance of cardiac ischemia-reperfusion injury (IRI), however, is less reported in pathological cardiac hypertrophy. To determine the effect of EP in pathological cardiac hypertrophy, Male 10-wk-old Sprague-Dawley rats (n=30) were subjected to 4 weeks of EP followed by 4-8 weeks of pressure overload (transverse aortic constriction, TAC) to induce pathological remodeling. TAC in untrained controls (n=30) led to pathological cardiac hypertrophy, depressed systolic function. We observed that left ventricular wall thickness in end diastole, heart size, heart weight-to-body weight ratio, heart weight-to-tibia length ratio, cross-sectional area of cardiomyocytes and the reactivation of fetal genes (atrial natriuretic peptide and brain natriuretic peptide) were markedly increased, meanwhile left ventricular internal dimension at end-diastole, systolic function were significantly decreased by TAC at 4 wks after operation (P < 0.01), all of which were effectively inhibited by EP treatment (P < 0.05), but the differences of these parameters were decreased at 8 wks after operation. Furthermore, EP treatment inhibited degradation of IκBα, and decreased NF-κB p65 subunit levels in the nuclear fraction, and then reduced IL2 levels in the myocardium of rats subject to TAC. EP can effectively attenuate pathological cardiac hypertrophic responses induced by TAC possibly through inhibition of degradation of IκB and blockade of the NF-κB signaling pathway in the early stage of pathological cardiac hypertrophy.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D006332 Cardiomegaly Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES. Cardiac Hypertrophy,Enlarged Heart,Heart Hypertrophy,Heart Enlargement,Cardiac Hypertrophies,Enlargement, Heart,Heart Hypertrophies,Heart, Enlarged,Hypertrophies, Cardiac,Hypertrophies, Heart,Hypertrophy, Cardiac,Hypertrophy, Heart
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D020097 Natriuretic Peptide, Brain A PEPTIDE that is secreted by the BRAIN and the HEART ATRIA, stored mainly in cardiac ventricular MYOCARDIUM. It can cause NATRIURESIS; DIURESIS; VASODILATION; and inhibits secretion of RENIN and ALDOSTERONE. It improves heart function. It contains 32 AMINO ACIDS. Brain Natriuretic Peptide,Nesiritide,B-Type Natriuretic Peptide,BNP Gene Product,BNP-32,Brain Natriuretic Peptide-32,Natrecor,Natriuretic Factor-32,Natriuretic Peptide Type-B,Type-B Natriuretic Peptide,Ventricular Natriuretic Peptide, B-type,BNP 32,Brain Natriuretic Peptide 32,Natriuretic Factor 32,Natriuretic Peptide Type B,Natriuretic Peptide, B-Type,Natriuretic Peptide, Type-B,Natriuretic Peptide-32, Brain,Peptide, Brain Natriuretic,Peptide-32, Brain Natriuretic,Type B Natriuretic Peptide,Ventricular Natriuretic Peptide, B type

Related Publications

Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
October 2015, Zhonghua xin xue guan bing za zhi,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
January 2023, Frontiers in pharmacology,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
January 2015, International journal of clinical and experimental pathology,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
December 2015, Experimental and therapeutic medicine,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
January 2014, Journal of cardiology,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
May 2015, Biochemical and biophysical research communications,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
February 2007, Circulation journal : official journal of the Japanese Circulation Society,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
September 2016, Cardiovascular research,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
November 2015, Biochimica et biophysica acta,
Tongyi Xu, and Hao Tang, and Ben Zhang, and Chengliang Cai, and Xiaohong Liu, and Qingqi Han, and Liangjian Zou
July 2011, Acta pharmacologica Sinica,
Copied contents to your clipboard!