Lobular breast cancer: molecular basis, mouse and cellular models. 2015

Matthias Christgen, and Patrick W B Derksen
Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. Christgen.Matthias@MH-Hannover.de.

Infiltrating lobular breast cancer (ILC) is the most common special breast cancer subtype. With mutational or epigenetic inactivation of the cell adhesion molecule E-cadherin (CDH1) being confined almost exclusively to ILC, this tumor entity stands out from all other types of breast cancers. The molecular basis of ILC is linked to loss of E-cadherin, as evidenced by human CDH1 germline mutations and conditional knockout mouse models. A better understanding of ILC beyond the level of descriptive studies depends on physiologically relevant and functional tools. This review provides a detailed overview on ILC models, including well-characterized cell lines, xenograft tumors and genetically engineered mouse models. We consider advantages and limitations of these models and evaluate their representativeness for human ILC. The still incompletely defined mechanisms by which loss of E-cadherin drives malignant transformation are discussed based on recent findings in these models. Moreover, candidate genes and signaling pathways potentially involved in ILC development and progression as well as anticancer drug and endocrine resistance are highlighted.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Matthias Christgen, and Patrick W B Derksen
September 2007, Reviews in endocrine & metabolic disorders,
Matthias Christgen, and Patrick W B Derksen
January 2000, Journal of the National Cancer Institute. Monographs,
Matthias Christgen, and Patrick W B Derksen
January 2023, Cellular signalling,
Matthias Christgen, and Patrick W B Derksen
January 2004, Breast disease,
Matthias Christgen, and Patrick W B Derksen
July 2016, Pathology, research and practice,
Matthias Christgen, and Patrick W B Derksen
January 2000, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association,
Matthias Christgen, and Patrick W B Derksen
April 2011, Current opinion in neurology,
Matthias Christgen, and Patrick W B Derksen
November 1991, BioEssays : news and reviews in molecular, cellular and developmental biology,
Matthias Christgen, and Patrick W B Derksen
August 1981, Biological reviews of the Cambridge Philosophical Society,
Copied contents to your clipboard!